Detection of signs of Parkinson's disease ...
Type de document :
Communication dans un congrès avec actes
Titre :
Detection of signs of Parkinson's disease using dynamical features via an indirect pointing device
Auteur(s) :
Ushirobira, Rosane [Auteur]
Finite-time control and estimation for distributed systems [VALSE]
Efimov, Denis [Auteur]
Finite-time control and estimation for distributed systems [VALSE]
Casiez, Géry [Auteur]
Technology and knowledge for interaction [LOKI]
Fernandez, Laure [Auteur]
Institut des Sciences du Mouvement Etienne Jules Marey [ISM]
Olsson, Fredrik [Auteur]
Department of Information Technology [DIT-UPPSALA]
Medvedev, Alexander [Auteur]
Department of Information Technology [DIT-UPPSALA]

Finite-time control and estimation for distributed systems [VALSE]
Efimov, Denis [Auteur]

Finite-time control and estimation for distributed systems [VALSE]
Casiez, Géry [Auteur]

Technology and knowledge for interaction [LOKI]
Fernandez, Laure [Auteur]
Institut des Sciences du Mouvement Etienne Jules Marey [ISM]
Olsson, Fredrik [Auteur]
Department of Information Technology [DIT-UPPSALA]
Medvedev, Alexander [Auteur]
Department of Information Technology [DIT-UPPSALA]
Titre de la manifestation scientifique :
IFAC 2020 - 21st IFAC World Congress
Ville :
Berlin
Pays :
Allemagne
Date de début de la manifestation scientifique :
2020-07
Mot(s)-clé(s) en anglais :
Quantification of physiological parameters for diagnosis and treatment assessment. Developments in measurement, signal processing. Control of physiological and clinical variables.
Discipline(s) HAL :
Sciences de l'ingénieur [physics]/Automatique / Robotique
Résumé en anglais : [en]
In this paper, we study the problem of detecting early signs of Parkinson's disease during an indirect human-computer interaction via a computer mouse activated by a user. The experimental setup provides a signal determined ...
Lire la suite >In this paper, we study the problem of detecting early signs of Parkinson's disease during an indirect human-computer interaction via a computer mouse activated by a user. The experimental setup provides a signal determined by the screen pointer position. An appropriate choice of segments in the cursor position raw data provides a filtered signal from which a number of quantifiable criteria can be obtained. These dynamical features are derived based on control theory methods. Thanks to these indicators, a subsequent analysis allows the detection of users with tremor. Real-life data from patients with Parkinson's and healthy controls are used to illustrate our detection method.Lire moins >
Lire la suite >In this paper, we study the problem of detecting early signs of Parkinson's disease during an indirect human-computer interaction via a computer mouse activated by a user. The experimental setup provides a signal determined by the screen pointer position. An appropriate choice of segments in the cursor position raw data provides a filtered signal from which a number of quantifiable criteria can be obtained. These dynamical features are derived based on control theory methods. Thanks to these indicators, a subsequent analysis allows the detection of users with tremor. Real-life data from patients with Parkinson's and healthy controls are used to illustrate our detection method.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Collections :
Source :
Fichiers
- https://hal.inria.fr/hal-02887913/document
- Accès libre
- Accéder au document
- https://hal.inria.fr/hal-02887913/document
- Accès libre
- Accéder au document
- https://hal.inria.fr/hal-02887913/document
- Accès libre
- Accéder au document
- document
- Accès libre
- Accéder au document
- UECFOM_IFAC20_final.pdf
- Accès libre
- Accéder au document
- document
- Accès libre
- Accéder au document
- UECFOM_IFAC20_final.pdf
- Accès libre
- Accéder au document