Toward a general theory of metacommunity ecology
Type de document :
Partie d'ouvrage: Chapitre
Titre :
Toward a general theory of metacommunity ecology
Auteur(s) :
Gravel, Dominique [Auteur]
Massol, Francois [Auteur]
Centre d’Infection et d’Immunité de Lille - INSERM U 1019 - UMR 9017 - UMR 8204 [CIIL]
Massol, Francois [Auteur]

Centre d’Infection et d’Immunité de Lille - INSERM U 1019 - UMR 9017 - UMR 8204 [CIIL]
Titre de l’ouvrage :
Theoretical Ecology
Éditeur :
Oxford University Press
Date de publication :
2020-05-14
Mot(s)-clé(s) en anglais :
metapopulation
metacommunity
spatial ecology
coexistence
predator-prey
mutualism
Levin’s model
metacommunity
spatial ecology
coexistence
predator-prey
mutualism
Levin’s model
Discipline(s) HAL :
Sciences du Vivant [q-bio]/Biodiversité
Résumé en anglais : [en]
Investigation of how spatial processes affect the maintenance of biodiversity and its geographic distribution has led to landmark contributions in community ecology. Theory has followed a logical complexification of the ...
Lire la suite >Investigation of how spatial processes affect the maintenance of biodiversity and its geographic distribution has led to landmark contributions in community ecology. Theory has followed a logical complexification of the objects of study, with specific models at each step, from populations connected by dispersal to ecosystems connected by flows of energy and material. This large body of theory is not only diverse in the questions it addresses, and the scales and organization levels it encompasses, but also in the types of models used to represent spatial dynamics. Unfortunately, this makes it hard to establish clear, standard, quantitative predictions stemming from a coherent mathematical formalism. Here our objectives are : i) to propose a general metacommunity model that allows the investigation of spatial ecology from populations to entire food webs ; ii) use the model to review a set of principles driving coexistence in all types of metacommunities; iii) reveal how these principles constrain the spatial distribution of diversity, with a particular emphasis on species co-distribution. The model is based on the well-established representation of spatial dynamics through colonization and extinction processes. We generalize Levins’ metapopulation model to all types of ecological interactions, using a formalism akin to Lotka–Volterra equations for local community dynamics. Doing so, we revisit coexistence mechanisms proposed for competitive metacommunities, along with the assembly dynamics for spatial food webs and mutualistic interactions.Lire moins >
Lire la suite >Investigation of how spatial processes affect the maintenance of biodiversity and its geographic distribution has led to landmark contributions in community ecology. Theory has followed a logical complexification of the objects of study, with specific models at each step, from populations connected by dispersal to ecosystems connected by flows of energy and material. This large body of theory is not only diverse in the questions it addresses, and the scales and organization levels it encompasses, but also in the types of models used to represent spatial dynamics. Unfortunately, this makes it hard to establish clear, standard, quantitative predictions stemming from a coherent mathematical formalism. Here our objectives are : i) to propose a general metacommunity model that allows the investigation of spatial ecology from populations to entire food webs ; ii) use the model to review a set of principles driving coexistence in all types of metacommunities; iii) reveal how these principles constrain the spatial distribution of diversity, with a particular emphasis on species co-distribution. The model is based on the well-established representation of spatial dynamics through colonization and extinction processes. We generalize Levins’ metapopulation model to all types of ecological interactions, using a formalism akin to Lotka–Volterra equations for local community dynamics. Doing so, we revisit coexistence mechanisms proposed for competitive metacommunities, along with the assembly dynamics for spatial food webs and mutualistic interactions.Lire moins >
Langue :
Anglais
Audience :
Internationale
Vulgarisation :
Non
Projet ANR :
Source :