A soft-chemistry assisted strong metal–support ...
Type de document :
Article dans une revue scientifique: Article original
DOI :
URL permanente :
Titre :
A soft-chemistry assisted strong metal–support interaction on a designed plasmonic core–shell photocatalyst for enhanced photocatalytic hydrogen production
Auteur(s) :
Gessese, Getaneh [Auteur]
Wang, Cong [Auteur]
Chang, Bor Kae [Auteur]
Tai, Shih-Hsuan [Auteur]
Beaunier, Patricia [Auteur]
Wojcieszak, Robert [Auteur]
Unité de Catalyse et Chimie du Solide - UMR 8181 [UCCS]
Remita, Hynd [Auteur]
Colbeau-Justin, Christophe [Auteur]
Ghazzal, Mohamed Nawfal [Auteur]
Wang, Cong [Auteur]
Chang, Bor Kae [Auteur]
Tai, Shih-Hsuan [Auteur]
Beaunier, Patricia [Auteur]
Wojcieszak, Robert [Auteur]

Unité de Catalyse et Chimie du Solide - UMR 8181 [UCCS]
Remita, Hynd [Auteur]
Colbeau-Justin, Christophe [Auteur]
Ghazzal, Mohamed Nawfal [Auteur]
Titre de la revue :
Nanoscale
Numéro :
12
Pagination :
7011-7023
Éditeur :
Royal Society of Chemistry
Date de publication :
2020-01-28
Discipline(s) HAL :
Chimie/Catalyse
Résumé en anglais : [en]
Engineering photocatalysts based on gold nanoparticles (AuNPs) has attracted great attention for the solar energy conversion due to their multiple and unique properties. However, boosting the photocatalytic performance of ...
Lire la suite >Engineering photocatalysts based on gold nanoparticles (AuNPs) has attracted great attention for the solar energy conversion due to their multiple and unique properties. However, boosting the photocatalytic performance of plasmonic materials for H2 generation has some limitations. In this study, we propose a soft-chemistry method for the preparation of a strong metal–support interaction (SMSI) to enhance the photocatalytic production of H2. The TiO2 thin overlayer covering finely dispersed AuNPs (forming an SMSI) boosts the photocatalytic generation of hydrogen, compared to AuNPs deposited at the surface of TiO2 (labelled as a classical system). The pathway of the charge carriers’ dynamics regarding the system configuration is found to be different. The photogenerated electrons are collected by AuNPs in a classical system and act as an active site, while, unconventionally, they are injected back in the titania surface for an SMSI photocatalyst making the system highly efficient. Additionally, the adsorption energy of methanol, theoretically estimated using the density functional theory (DFT) methodology, is lower for the soft-chemistry SMSI photocatalyst accelerating the kinetics of photocatalytic hydrogen production. The SMSI obtained by soft-chemistry is an original concept for highly efficient photocatalytic materials, where the photon-to-energy conversion remains a major challenge.Lire moins >
Lire la suite >Engineering photocatalysts based on gold nanoparticles (AuNPs) has attracted great attention for the solar energy conversion due to their multiple and unique properties. However, boosting the photocatalytic performance of plasmonic materials for H2 generation has some limitations. In this study, we propose a soft-chemistry method for the preparation of a strong metal–support interaction (SMSI) to enhance the photocatalytic production of H2. The TiO2 thin overlayer covering finely dispersed AuNPs (forming an SMSI) boosts the photocatalytic generation of hydrogen, compared to AuNPs deposited at the surface of TiO2 (labelled as a classical system). The pathway of the charge carriers’ dynamics regarding the system configuration is found to be different. The photogenerated electrons are collected by AuNPs in a classical system and act as an active site, while, unconventionally, they are injected back in the titania surface for an SMSI photocatalyst making the system highly efficient. Additionally, the adsorption energy of methanol, theoretically estimated using the density functional theory (DFT) methodology, is lower for the soft-chemistry SMSI photocatalyst accelerating the kinetics of photocatalytic hydrogen production. The SMSI obtained by soft-chemistry is an original concept for highly efficient photocatalytic materials, where the photon-to-energy conversion remains a major challenge.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Établissement(s) :
Université de Lille
CNRS
Centrale Lille
ENSCL
Univ. Artois
CNRS
Centrale Lille
ENSCL
Univ. Artois
Collections :
Équipe(s) de recherche :
Valorisation des alcanes et de la biomasse (VAALBIO)
Date de dépôt :
2020-11-25T13:12:32Z
2020-11-26T13:42:28Z
2020-12-08T11:16:52Z
2020-11-26T13:42:28Z
2020-12-08T11:16:52Z
Fichiers
- Draft-submitted.pdf
- Version soumise (preprint)
- Accès restreint
- Accéder au document