Unraveling the Ground State and Excited ...
Type de document :
Compte-rendu et recension critique d'ouvrage
Titre :
Unraveling the Ground State and Excited State Structures and Dynamics of Hydrated Ce<sup>3+</sup> Ions by Experiment and Theory
Auteur(s) :
Lindqvist-Reis, Patric [Auteur correspondant]
Institut für Nukleare Entsorgung [INE]
Réal, Florent [Auteur correspondant]
Physico-Chimie Moléculaire Théorique [PCMT]
Janicki, Rafał [Auteur]
Vallet, Valérie [Auteur]
Physico-Chimie Moléculaire Théorique [PCMT]
Institut für Nukleare Entsorgung [INE]
Réal, Florent [Auteur correspondant]

Physico-Chimie Moléculaire Théorique [PCMT]
Janicki, Rafał [Auteur]
Vallet, Valérie [Auteur]

Physico-Chimie Moléculaire Théorique [PCMT]
Titre de la revue :
INORGANIC CHEMISTRY
Pagination :
10111-10121
Éditeur :
American Chemical Society
Date de publication :
2018-08-09
ISSN :
0020-1669
Discipline(s) HAL :
Chimie/Chimie théorique et/ou physique
Physique [physics]/Physique [physics]/Chimie-Physique [physics.chem-ph]
Physique [physics]/Physique [physics]/Chimie-Physique [physics.chem-ph]
Résumé en anglais : [en]
The 4f-5d transition of Ce<sup>3+</sup> provides favorable optical spectroscopic properties such as high sensitivity and quantum yield, making it a most important dopant for lanthanide-activated phosphors. A key for the ...
Lire la suite >The 4f-5d transition of Ce<sup>3+</sup> provides favorable optical spectroscopic properties such as high sensitivity and quantum yield, making it a most important dopant for lanthanide-activated phosphors. A key for the design of these materials with fine-tuned color emission is a fundamental understanding of the Ce<sup>3+</sup> ground state and excited state structures and the dynamics of energy transfer. Such data is also crucial for deriving coordination chemistry information on Ce<sup>3+</sup> ions in different chemical environments directly from their optical spectra. Here, by combining 4f-5d absorption and luminescence spectroscopy and highly accurate quantum chemical electronic structure calculations, we study the interplay between the local structure of Ce<sup>3+</sup> in aqueous solutions and in crystalline hydrates, the strengths of Ce−O/Cl interactions with aqua and chloride ligands, and the resulting absorption and luminescence spectra. Experimental and theoretical absorption spectra of [Ce(H<sub>2</sub>O)<sub>9</sub>]<sup>3+</sup> and [Ce(H<sub>2</sub>O)<sub>8</sub>]<sup>3+</sup> with defined geometries provide a means for analyzing the equilibrium between these species in aqueous solution as a function of temperature (K(298) = 0.20 ± 0.03), while analyses of spectra of different aqua-chloro complexes reveal that eight-coordinate aqua-chloro complexes are present in solution at high chloride concentration. An intriguing feature in these systems concerns the large observed Stokes shifts, 5500−10 100 cm<sup>-1</sup>. By exploring the excited state potential energy surfaces with relativistic multireference calculations, we show that these shifts result from significant geometrical relaxation processes in the lowest 5d1 excited state. For [*Ce(H<sub>2</sub>O)<sub>8</sub>]<sup>3+</sup> the relaxation gives shorter Ce−O bonds and a Stokes shift of ∼5500 cm<sup>-1</sup>, while for [*Ce(H<sub>2</sub>O)<sub>9</sub>]<sup>3+</sup> the lowest 5d<sup>1</sup> state results in a spontaneous dissociation of a water molecule and a Stokes shift of ∼10 100 cm<sup>-1</sup>. These findings are important for the understanding and optimization of luminescence properties of cerium complexes.Lire moins >
Lire la suite >The 4f-5d transition of Ce<sup>3+</sup> provides favorable optical spectroscopic properties such as high sensitivity and quantum yield, making it a most important dopant for lanthanide-activated phosphors. A key for the design of these materials with fine-tuned color emission is a fundamental understanding of the Ce<sup>3+</sup> ground state and excited state structures and the dynamics of energy transfer. Such data is also crucial for deriving coordination chemistry information on Ce<sup>3+</sup> ions in different chemical environments directly from their optical spectra. Here, by combining 4f-5d absorption and luminescence spectroscopy and highly accurate quantum chemical electronic structure calculations, we study the interplay between the local structure of Ce<sup>3+</sup> in aqueous solutions and in crystalline hydrates, the strengths of Ce−O/Cl interactions with aqua and chloride ligands, and the resulting absorption and luminescence spectra. Experimental and theoretical absorption spectra of [Ce(H<sub>2</sub>O)<sub>9</sub>]<sup>3+</sup> and [Ce(H<sub>2</sub>O)<sub>8</sub>]<sup>3+</sup> with defined geometries provide a means for analyzing the equilibrium between these species in aqueous solution as a function of temperature (K(298) = 0.20 ± 0.03), while analyses of spectra of different aqua-chloro complexes reveal that eight-coordinate aqua-chloro complexes are present in solution at high chloride concentration. An intriguing feature in these systems concerns the large observed Stokes shifts, 5500−10 100 cm<sup>-1</sup>. By exploring the excited state potential energy surfaces with relativistic multireference calculations, we show that these shifts result from significant geometrical relaxation processes in the lowest 5d1 excited state. For [*Ce(H<sub>2</sub>O)<sub>8</sub>]<sup>3+</sup> the relaxation gives shorter Ce−O bonds and a Stokes shift of ∼5500 cm<sup>-1</sup>, while for [*Ce(H<sub>2</sub>O)<sub>9</sub>]<sup>3+</sup> the lowest 5d<sup>1</sup> state results in a spontaneous dissociation of a water molecule and a Stokes shift of ∼10 100 cm<sup>-1</sup>. These findings are important for the understanding and optimization of luminescence properties of cerium complexes.Lire moins >
Langue :
Anglais
Vulgarisation :
Non
Projet ANR :
Source :
Fichiers
- document
- Accès libre
- Accéder au document
- lanthanide-Lindqvist-Reis-IC2018-57-10111.pdf
- Accès libre
- Accéder au document