Alkali–metal ion coordination in uranyl(VI) ...
Document type :
Compte-rendu et recension critique d'ouvrage
DOI :
Title :
Alkali–metal ion coordination in uranyl(VI) poly-peroxo complexes in solution, inorganic analogues to crown-ethers. Part 2. Complex formation in the tetramethyl ammonium-, Li<sup>+</sup>-, Na<sup>+</sup>- and K<sup>+</sup>-uranyl(VI)–peroxide–carbonate systems
Author(s) :
Zanonato, Pier Luigi [Auteur]
Dipartimento di Scienze Chimiche [Padova]
Szabó, Zoltan [Auteur]
Vallet, Valérie [Auteur]
Physico-Chimie Moléculaire Théorique [PCMT]
Grenthe, Ingmar [Auteur]
Di Bernardo, Plinio [Auteur]
Dipartimento di Scienze Chimiche [Padova]
Dipartimento di Scienze Chimiche [Padova]
Szabó, Zoltan [Auteur]
Vallet, Valérie [Auteur]

Physico-Chimie Moléculaire Théorique [PCMT]
Grenthe, Ingmar [Auteur]
Di Bernardo, Plinio [Auteur]
Dipartimento di Scienze Chimiche [Padova]
Journal title :
Dalton Transactions
Pages :
16565-16572
Publisher :
Royal Society of Chemistry
Publication date :
2015-08-10
ISSN :
1477-9226
HAL domain(s) :
Physique [physics]/Physique [physics]/Chimie-Physique [physics.chem-ph]
English abstract : [en]
The constitution and equilibrium constants of ternary uranyl(VI) peroxide carbonate complexes [(UO<sub>2</sub>)<sub>p</sub>(O<sub>2</sub>)<sub>q</sub>(CO<sub>3</sub>)<sub>r</sub>]<sup>2(p−q−r)</sup> have been determined ...
Show more >The constitution and equilibrium constants of ternary uranyl(VI) peroxide carbonate complexes [(UO<sub>2</sub>)<sub>p</sub>(O<sub>2</sub>)<sub>q</sub>(CO<sub>3</sub>)<sub>r</sub>]<sup>2(p−q−r)</sup> have been determined at 0 °C in 0.50 M MNO<sub>3</sub>, M = Li, K, and TMA (tetramethyl ammonium), ionic media using potentiometric and spectrophotometric data; <sup>17</sup>O NMR data were used to determine the number of complexes present. The formation of cyclic oligomers, “[(UO<sub>2</sub>)(O<sub>2</sub>)(CO<sub>3</sub>)]<sub>n</sub>”, n = 4, 5, 6, with different stoichiometries depending on the ionic medium used, suggests that Li<sup>+</sup>, Na<sup>+</sup>, K<sup>+</sup> and TMA ions act as templates for the formation of uranyl peroxide rings where the uranyl-units are linked by μ–η<sub>2</sub>–η<sub>2</sub> bridged peroxide-ions. The templating effect is due to the coordination of the M<sup>+</sup>-ions to the uranyl oxygen atoms, where the coordination of Li<sup>+</sup> results in the formation of Li[(UO<sub>2</sub>)(O<sub>2</sub>)(CO<sub>3</sub>)]<sub>4</sub><sup>7-</sup>, Na<sup>+</sup> and K<sup>+</sup> in the formation of Na/K[(UO<sub>2</sub>)(O<sub>2</sub>)(CO<sub>3</sub>)]<sub>5</sub><sup>9-</sup> complexes, while the large tetramethyl ammonium ion promotes the formation of two oligomers, TMA[(UO<sub>2</sub>)(O<sub>2</sub>)(CO<sub>3</sub>)]<sub>5</sub><sup>9-</sup> and TMA[(UO<sub>2</sub>)(O<sub>2</sub>)(CO<sub>3</sub>)]<sub>6</sub><sup>11-</sup>. The NMR spectra demonstrate that the coordination of Na<sup>+</sup> in the five- and six-membered oligomers is significantly stronger than that of TMA<sup>+</sup>; these observations suggest that the templating effect is similar to the one observed in the synthesis of crown-ethers. The NMR experiments also demonstrate that the exchange between TMA[(UO<sub>2</sub>)(O<sub>2</sub>)(CO<sub>3</sub>)]<sub>5</sub><sup>9-</sup> and TMA[(UO<sub>2</sub>)(O<sub>2</sub>)(CO<sub>3</sub>)]<sub>6</sub><sup>11-</sup> is slow on the <sup>17</sup>O chemical shift time-scale, while the exchange between TMA[(UO<sub>2</sub>)(O<sub>2</sub>)(CO<sub>3</sub>)]<sub>6</sub><sup>11-</sup> and Na[(UO<sub>2</sub>)(O<sub>2</sub>)(CO<sub>3</sub>)]<sub>6</sub><sup>11-</sup> is fast. There was no indication of the presence of large clusters of the type identified by Burns and Nyman (M. Nyman and P. C. Burns, Chem. Soc. Rev., 2012, 41, 7314–7367) and possible reasons for this and the implications for the synthesis of large clusters are briefly discussed.Show less >
Show more >The constitution and equilibrium constants of ternary uranyl(VI) peroxide carbonate complexes [(UO<sub>2</sub>)<sub>p</sub>(O<sub>2</sub>)<sub>q</sub>(CO<sub>3</sub>)<sub>r</sub>]<sup>2(p−q−r)</sup> have been determined at 0 °C in 0.50 M MNO<sub>3</sub>, M = Li, K, and TMA (tetramethyl ammonium), ionic media using potentiometric and spectrophotometric data; <sup>17</sup>O NMR data were used to determine the number of complexes present. The formation of cyclic oligomers, “[(UO<sub>2</sub>)(O<sub>2</sub>)(CO<sub>3</sub>)]<sub>n</sub>”, n = 4, 5, 6, with different stoichiometries depending on the ionic medium used, suggests that Li<sup>+</sup>, Na<sup>+</sup>, K<sup>+</sup> and TMA ions act as templates for the formation of uranyl peroxide rings where the uranyl-units are linked by μ–η<sub>2</sub>–η<sub>2</sub> bridged peroxide-ions. The templating effect is due to the coordination of the M<sup>+</sup>-ions to the uranyl oxygen atoms, where the coordination of Li<sup>+</sup> results in the formation of Li[(UO<sub>2</sub>)(O<sub>2</sub>)(CO<sub>3</sub>)]<sub>4</sub><sup>7-</sup>, Na<sup>+</sup> and K<sup>+</sup> in the formation of Na/K[(UO<sub>2</sub>)(O<sub>2</sub>)(CO<sub>3</sub>)]<sub>5</sub><sup>9-</sup> complexes, while the large tetramethyl ammonium ion promotes the formation of two oligomers, TMA[(UO<sub>2</sub>)(O<sub>2</sub>)(CO<sub>3</sub>)]<sub>5</sub><sup>9-</sup> and TMA[(UO<sub>2</sub>)(O<sub>2</sub>)(CO<sub>3</sub>)]<sub>6</sub><sup>11-</sup>. The NMR spectra demonstrate that the coordination of Na<sup>+</sup> in the five- and six-membered oligomers is significantly stronger than that of TMA<sup>+</sup>; these observations suggest that the templating effect is similar to the one observed in the synthesis of crown-ethers. The NMR experiments also demonstrate that the exchange between TMA[(UO<sub>2</sub>)(O<sub>2</sub>)(CO<sub>3</sub>)]<sub>5</sub><sup>9-</sup> and TMA[(UO<sub>2</sub>)(O<sub>2</sub>)(CO<sub>3</sub>)]<sub>6</sub><sup>11-</sup> is slow on the <sup>17</sup>O chemical shift time-scale, while the exchange between TMA[(UO<sub>2</sub>)(O<sub>2</sub>)(CO<sub>3</sub>)]<sub>6</sub><sup>11-</sup> and Na[(UO<sub>2</sub>)(O<sub>2</sub>)(CO<sub>3</sub>)]<sub>6</sub><sup>11-</sup> is fast. There was no indication of the presence of large clusters of the type identified by Burns and Nyman (M. Nyman and P. C. Burns, Chem. Soc. Rev., 2012, 41, 7314–7367) and possible reasons for this and the implications for the synthesis of large clusters are briefly discussed.Show less >
Language :
Anglais
Popular science :
Non
ANR Project :
Source :