Fractal conceptualization of intumescent ...
Document type :
Article dans une revue scientifique
PMID :
Permalink :
Title :
Fractal conceptualization of intumescent fire barriers, toward simulations of virtual morphologies
Author(s) :
Okyay, Gizem [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Naik, Anil D [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Solarski, Fabienne [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Jimenez, Maude [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Bourbigot, Serge [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Naik, Anil D [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Solarski, Fabienne [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Jimenez, Maude [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Bourbigot, Serge [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Journal title :
Scientific Reports
Abbreviated title :
Sci Rep
Volume number :
9
Pages :
1872
Publisher :
Nature Publishing Group
Publication date :
2019-02-12
ISSN :
2045-2322
HAL domain(s) :
Chimie
Chimie/Matériaux
Chimie/Polymères
Chimie/Matériaux
Chimie/Polymères
English abstract : [en]
By limiting the heat spread during a fire hazard, intumescent coatings are important components of passive protection systems. They swell due to heat induced reactions of micro constituents and are transformed into ...
Show more >By limiting the heat spread during a fire hazard, intumescent coatings are important components of passive protection systems. They swell due to heat induced reactions of micro constituents and are transformed into carbonaceous porous-like media, known as intumescent chars. Their multiscale inner structures, key elements of performance, are costly to predict by recurrent and large scale fire testing while numerical simulations are challenging due to complex kinetics. Hence, we propose a novel approach using the fractal theory and the random nature of events to conceptualize the coating expansion. Experimental specimens were obtained from fire protective coatings exposed to bench scale hydrocarbon fire. Mass fractals were evidenced in the slices of 3D sample volumes reconstructed from X-ray microtomography. Consequently, geometrical building blocks were simulated by random walk, active walk, aggregation-like and site percolation: physical-chemical modes of action were inherent in the attribution of the randomness. It is a first demonstration to conceptualize different types of intumescent actions by a generalized approach with dimensionless parameters at multiscale, thus eliminating the simulation of complex kinetics to obtain a realistic morphology. Also, fractal results brought new evidence to former chemical analyses on fire test residues trying to explain the kinetics of expansion. Expected outcomes are to predict virtually the reaction of fire protective systems hence to speed-up the assessment of fire performance through computed properties of virtual volumes.Show less >
Show more >By limiting the heat spread during a fire hazard, intumescent coatings are important components of passive protection systems. They swell due to heat induced reactions of micro constituents and are transformed into carbonaceous porous-like media, known as intumescent chars. Their multiscale inner structures, key elements of performance, are costly to predict by recurrent and large scale fire testing while numerical simulations are challenging due to complex kinetics. Hence, we propose a novel approach using the fractal theory and the random nature of events to conceptualize the coating expansion. Experimental specimens were obtained from fire protective coatings exposed to bench scale hydrocarbon fire. Mass fractals were evidenced in the slices of 3D sample volumes reconstructed from X-ray microtomography. Consequently, geometrical building blocks were simulated by random walk, active walk, aggregation-like and site percolation: physical-chemical modes of action were inherent in the attribution of the randomness. It is a first demonstration to conceptualize different types of intumescent actions by a generalized approach with dimensionless parameters at multiscale, thus eliminating the simulation of complex kinetics to obtain a realistic morphology. Also, fractal results brought new evidence to former chemical analyses on fire test residues trying to explain the kinetics of expansion. Expected outcomes are to predict virtually the reaction of fire protective systems hence to speed-up the assessment of fire performance through computed properties of virtual volumes.Show less >
Language :
Anglais
Audience :
Internationale
Popular science :
Non
European Project :
Administrative institution(s) :
Université de Lille
CNRS
INRA
ENSCL
CNRS
INRA
ENSCL
Collections :
Research team(s) :
Ingénierie des Systèmes Polymères
Submission date :
2019-02-23T18:08:40Z
2019-03-21T13:49:27Z
2023-06-30T09:15:40Z
2019-03-21T13:49:27Z
2023-06-30T09:15:40Z
Files
- Nature SR 2019 - Fractal conceptualization of intumescent fire barriers, toward simulations of virtual morphologies.pdf
- Version éditeur
- Open access
- Access the document