LSTM-based system for multiple obstacle ...
Document type :
Communication dans un congrès avec actes
DOI :
Title :
LSTM-based system for multiple obstacle detection using ultra-wide band radar
Author(s) :
Mimouna, Amira [Auteur]
COMmunications NUMériques - IEMN [COMNUM - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Laboratory of Advanced Technology and Intelligent Systems [LATIS]
Ben Khalifa, Anouar [Auteur]
Laboratory of Advanced Technology and Intelligent Systems [LATIS]
Alouani, Lihsen [Auteur]
COMmunications NUMériques - IEMN [COMNUM - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Tahleb Ahmed, Abdelmalik [Auteur]
COMmunications NUMériques - IEMN [COMNUM - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Rivenq, Atika [Auteur]
COMmunications NUMériques - IEMN [COMNUM - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Ben Amara, Najoua [Auteur]
Laboratory of Advanced Technology and Intelligent Systems [LATIS]
COMmunications NUMériques - IEMN [COMNUM - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Laboratory of Advanced Technology and Intelligent Systems [LATIS]
Ben Khalifa, Anouar [Auteur]
Laboratory of Advanced Technology and Intelligent Systems [LATIS]
Alouani, Lihsen [Auteur]
COMmunications NUMériques - IEMN [COMNUM - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Tahleb Ahmed, Abdelmalik [Auteur]
COMmunications NUMériques - IEMN [COMNUM - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Rivenq, Atika [Auteur]

COMmunications NUMériques - IEMN [COMNUM - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Ben Amara, Najoua [Auteur]
Laboratory of Advanced Technology and Intelligent Systems [LATIS]
Conference title :
13th International Conference on Agents and Artificial Intelligence, ICAART 2021
City :
Vienna (Online Streaming)
Country :
Autriche
Start date of the conference :
2021-02-04
Book title :
13th International Conference on Agents and Artificial Intelligence, ICAART 2021
Journal title :
Proceedings of the 13th International Conference on Agents and Artificial Intelligence, ICAART 2021
Publisher :
SCITEPRESS - Science and Technology Publications
Publication date :
2021
English keyword(s) :
Obstacle Detection
UWB Radar
Deep Learning
LSTM
Intelligent Transportation Systems
UWB Radar
Deep Learning
LSTM
Intelligent Transportation Systems
HAL domain(s) :
Sciences de l'ingénieur [physics]
Informatique [cs]
Informatique [cs]/Intelligence artificielle [cs.AI]
Informatique [cs]/Réseaux et télécommunications [cs.NI]
Sciences de l'ingénieur [physics]/Electronique
Sciences de l'ingénieur [physics]/Traitement du signal et de l'image [eess.SP]
Informatique [cs]
Informatique [cs]/Intelligence artificielle [cs.AI]
Informatique [cs]/Réseaux et télécommunications [cs.NI]
Sciences de l'ingénieur [physics]/Electronique
Sciences de l'ingénieur [physics]/Traitement du signal et de l'image [eess.SP]
English abstract : [en]
Autonomous vehicles present a promising opportunity in the future of transportation systems by providing road safety. As significant progress has been made in the automatic environment perception, the detection of road ...
Show more >Autonomous vehicles present a promising opportunity in the future of transportation systems by providing road safety. As significant progress has been made in the automatic environment perception, the detection of road obstacles remains a major challenge. Thus, to achieve reliable obstacle detection, several sensors have been employed. For short ranges, the Ultra-Wide Band (UWB) radar is utilized in order to detect objects in the near field. However, the main challenge appears in distinguishing the real target’s signature from noise in the received UWB signals. In this paper, we propose a novel framework that exploits Recurrent Neural Networks (RNNs) with UWB signals for multiple road obstacle detection. Features are extracted from the time-frequency domain using the discrete wavelet transform and are forwarded to the Long short-term memory (LSTM) network. We evaluate our approach on the OLIMP dataset which includes various driving situations with complex environment and targets from several classes. The obtained results show that the LSTM-based system outperforms the other implemented related techniques in terms of obstacle detection.Show less >
Show more >Autonomous vehicles present a promising opportunity in the future of transportation systems by providing road safety. As significant progress has been made in the automatic environment perception, the detection of road obstacles remains a major challenge. Thus, to achieve reliable obstacle detection, several sensors have been employed. For short ranges, the Ultra-Wide Band (UWB) radar is utilized in order to detect objects in the near field. However, the main challenge appears in distinguishing the real target’s signature from noise in the received UWB signals. In this paper, we propose a novel framework that exploits Recurrent Neural Networks (RNNs) with UWB signals for multiple road obstacle detection. Features are extracted from the time-frequency domain using the discrete wavelet transform and are forwarded to the Long short-term memory (LSTM) network. We evaluate our approach on the OLIMP dataset which includes various driving situations with complex environment and targets from several classes. The obtained results show that the LSTM-based system outperforms the other implemented related techniques in terms of obstacle detection.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
Source :
Files
- https://hal.archives-ouvertes.fr/hal-03195216/document
- Open access
- Access the document
- https://doi.org/10.5220/0010386904180425
- Open access
- Access the document
- https://doi.org/10.5220/0010386904180425
- Open access
- Access the document
- https://hal.archives-ouvertes.fr/hal-03195216/document
- Open access
- Access the document
- https://doi.org/10.5220/0010386904180425
- Open access
- Access the document
- https://doi.org/10.5220/0010386904180425
- Open access
- Access the document
- https://hal.archives-ouvertes.fr/hal-03195216/document
- Open access
- Access the document
- https://doi.org/10.5220/0010386904180425
- Open access
- Access the document
- https://doi.org/10.5220/0010386904180425
- Open access
- Access the document
- document
- Open access
- Access the document
- Mimouna_ICAART2021.pdf
- Open access
- Access the document
- 0010386904180425
- Open access
- Access the document