The Faraday instability in rectangular and ...
Document type :
Article dans une revue scientifique: Article original
Title :
The Faraday instability in rectangular and annular geometries: comparison of experiments with theory
Author(s) :
Ward, Kevin [Auteur correspondant]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Department of Chemical Engineering [Gainesville] [UF|CHE]
Zoueshtiagh, Farzam [Auteur]
Acoustique Impulsionnelle & Magnéto-Acoustique Non linéaire - Fluides, Interfaces Liquides & Micro-Systèmes - IEMN [AIMAN-FILMS - IEMN]
Laboratoire International associé sur les phénomènes Critiques et Supercritiques en électronique fonctionnelle, acoustique et fluidique [LIA LICS/LEMAC]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Narayanan, Ranga [Auteur]
Department of Chemical Engineering [Gainesville] [UF|CHE]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Department of Chemical Engineering [Gainesville] [UF|CHE]
Zoueshtiagh, Farzam [Auteur]

Acoustique Impulsionnelle & Magnéto-Acoustique Non linéaire - Fluides, Interfaces Liquides & Micro-Systèmes - IEMN [AIMAN-FILMS - IEMN]
Laboratoire International associé sur les phénomènes Critiques et Supercritiques en électronique fonctionnelle, acoustique et fluidique [LIA LICS/LEMAC]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Narayanan, Ranga [Auteur]
Department of Chemical Engineering [Gainesville] [UF|CHE]
Journal title :
Experiments in Fluids
Pages :
53
Publisher :
Springer Verlag (Germany)
Publication date :
2019-04
ISSN :
0723-4864
HAL domain(s) :
Sciences de l'ingénieur [physics]
English abstract : [en]
AbstractA longstanding question on the mechanically forced Faraday instability in rectangular geometries arises from a disparity between theory and experiments (Craik and Armitage in Fluid Dyn Res 15:129–143, 1995). It can ...
Show more >AbstractA longstanding question on the mechanically forced Faraday instability in rectangular geometries arises from a disparity between theory and experiments (Craik and Armitage in Fluid Dyn Res 15:129–143, 1995). It can be stated as: do corners in a rectangular geometry Faraday experiment cause the disparity between prediction and experiment? This study is an attempt to settle this question by comparing the Faraday instability for two fluids in rectangular geometries where corners must be present with equivalent annular geometries where such corners are necessarily absent. Non-idealities, i.e., damping, arising from a slight meniscus wave motion and induced sidewall damping are observed for thin gaps, causing discrepancies between the predicted instability thresholds and those determined experimentally. However, even for thin-gap geometries, experimental agreement between the tested rectangular geometry and its corresponding annular geometry remains excellent. This suggests that corner effects on the system stability are negligible for rectangular geometries and thus any disparity between theory and experiment is due principally to the damping caused by proximity of the lateral walls.Show less >
Show more >AbstractA longstanding question on the mechanically forced Faraday instability in rectangular geometries arises from a disparity between theory and experiments (Craik and Armitage in Fluid Dyn Res 15:129–143, 1995). It can be stated as: do corners in a rectangular geometry Faraday experiment cause the disparity between prediction and experiment? This study is an attempt to settle this question by comparing the Faraday instability for two fluids in rectangular geometries where corners must be present with equivalent annular geometries where such corners are necessarily absent. Non-idealities, i.e., damping, arising from a slight meniscus wave motion and induced sidewall damping are observed for thin gaps, causing discrepancies between the predicted instability thresholds and those determined experimentally. However, even for thin-gap geometries, experimental agreement between the tested rectangular geometry and its corresponding annular geometry remains excellent. This suggests that corner effects on the system stability are negligible for rectangular geometries and thus any disparity between theory and experiment is due principally to the damping caused by proximity of the lateral walls.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
Source :