Spatiotemporal control of DNA-based chemical ...
Type de document :
Article dans une revue scientifique: Article original
Titre :
Spatiotemporal control of DNA-based chemical reaction network via electrochemical activation in microfluidics
Auteur(s) :
Kurylo, Ievgen [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Gines, Guillaume [Auteur]
Gulliver (UMR 7083)
Laboratory for Integrated Micro Mechatronics Systems [LIMMS]
Rondelez, Yannick [Auteur]
Gulliver (UMR 7083)
Coffinier, Yannick [Auteur]
NanoBioInterfaces - IEMN [NBI - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Vlandas, Alexis [Auteur]
Bio-Micro-Electro-Mechanical Systems - IEMN [BIOMEMS - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Gines, Guillaume [Auteur]
Gulliver (UMR 7083)
Laboratory for Integrated Micro Mechatronics Systems [LIMMS]
Rondelez, Yannick [Auteur]
Gulliver (UMR 7083)
Coffinier, Yannick [Auteur]

NanoBioInterfaces - IEMN [NBI - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Vlandas, Alexis [Auteur]

Bio-Micro-Electro-Mechanical Systems - IEMN [BIOMEMS - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Titre de la revue :
Scientific Reports
Pagination :
6396
Éditeur :
Nature Publishing Group
Date de publication :
2018
ISSN :
2045-2322
Discipline(s) HAL :
Sciences du Vivant [q-bio]/Biotechnologies
Sciences de l'ingénieur [physics]/Micro et nanotechnologies/Microélectronique
Sciences de l'ingénieur [physics]/Micro et nanotechnologies/Microélectronique
Résumé en anglais : [en]
In recent years, DNA computing frameworks have been developed to create dynamical systems which can be used for information processing. These emerging synthetic biochemistry tools can be leveraged to gain a better understanding ...
Lire la suite >In recent years, DNA computing frameworks have been developed to create dynamical systems which can be used for information processing. These emerging synthetic biochemistry tools can be leveraged to gain a better understanding of fundamental biology but can also be implemented in biosensors and unconventional computing. Most of the efforts so far have focused on changing the topologies of DNA molecular networks or scaling them up. Several issues have thus received little attention and remain to be solved to turn them into real life technologies. In particular, the ability to easily interact in real-time with them is a key requirement. The previous attempts to achieve this aim have used microfluidic approaches, such as valves, which are cumbersome. We show that electrochemical triggering using DNA-grafted micro-fabricated gold electrodes can be used to give instructions to these molecular systems. We demonstrate how this approach can be used to release at specific times and locations DNA-based instructions. In particular, we trigger reaction-diffusion autocatalytic fronts in microfluidic channels. While limited by the stability of the Au-S bond, this easy to implement, versatile and scalable technique can be used in any biology laboratory to provide new ways to interact with any DNA-based computing framework.Lire moins >
Lire la suite >In recent years, DNA computing frameworks have been developed to create dynamical systems which can be used for information processing. These emerging synthetic biochemistry tools can be leveraged to gain a better understanding of fundamental biology but can also be implemented in biosensors and unconventional computing. Most of the efforts so far have focused on changing the topologies of DNA molecular networks or scaling them up. Several issues have thus received little attention and remain to be solved to turn them into real life technologies. In particular, the ability to easily interact in real-time with them is a key requirement. The previous attempts to achieve this aim have used microfluidic approaches, such as valves, which are cumbersome. We show that electrochemical triggering using DNA-grafted micro-fabricated gold electrodes can be used to give instructions to these molecular systems. We demonstrate how this approach can be used to release at specific times and locations DNA-based instructions. In particular, we trigger reaction-diffusion autocatalytic fronts in microfluidic channels. While limited by the stability of the Au-S bond, this easy to implement, versatile and scalable technique can be used in any biology laboratory to provide new ways to interact with any DNA-based computing framework.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Source :
Fichiers
- https://hal.archives-ouvertes.fr/hal-02351559/document
- Accès libre
- Accéder au document
- https://www.nature.com/articles/s41598-018-24659-7.pdf
- Accès libre
- Accéder au document
- https://hal.archives-ouvertes.fr/hal-02351559/document
- Accès libre
- Accéder au document
- https://hal.archives-ouvertes.fr/hal-02351559/document
- Accès libre
- Accéder au document
- document
- Accès libre
- Accéder au document
- Kurylo_2018_SciRep_s41598-018-24659-7.pdf
- Accès libre
- Accéder au document
- s41598-018-24659-7.pdf
- Accès libre
- Accéder au document
- document
- Accès libre
- Accéder au document
- Kurylo_2018_SciRep_s41598-018-24659-7.pdf
- Accès libre
- Accéder au document