Scanning tunneling state recognition with ...
Type de document :
Compte-rendu et recension critique d'ouvrage
DOI :
Titre :
Scanning tunneling state recognition with multi-class neural network ensembles
Auteur(s) :
Gordon, O. [Auteur]
University of Nottingham, UK [UON]
d'Hondt, P. [Auteur]
Physique - IEMN [PHYSIQUE - IEMN]
University of Nottingham, UK [UON]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Knijff, L. [Auteur]
Universiteit Utrecht / Utrecht University [Utrecht]
Freeney, S. E. [Auteur]
Universiteit Utrecht / Utrecht University [Utrecht]
Junqueira, F. [Auteur]
University of Nottingham, UK [UON]
Moriarty, P. [Auteur]
University of Nottingham, UK [UON]
Swart, I. [Auteur]
Universiteit Utrecht / Utrecht University [Utrecht]
University of Nottingham, UK [UON]
d'Hondt, P. [Auteur]
Physique - IEMN [PHYSIQUE - IEMN]
University of Nottingham, UK [UON]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Knijff, L. [Auteur]
Universiteit Utrecht / Utrecht University [Utrecht]
Freeney, S. E. [Auteur]
Universiteit Utrecht / Utrecht University [Utrecht]
Junqueira, F. [Auteur]
University of Nottingham, UK [UON]
Moriarty, P. [Auteur]
University of Nottingham, UK [UON]
Swart, I. [Auteur]
Universiteit Utrecht / Utrecht University [Utrecht]
Titre de la revue :
Review of Scientific Instruments
Pagination :
103704
Éditeur :
American Institute of Physics
Date de publication :
2019
ISSN :
0034-6748
Discipline(s) HAL :
Informatique [cs]/Automatique
Informatique [cs]/Réseau de neurones [cs.NE]
Informatique [cs]/Réseau de neurones [cs.NE]
Résumé en anglais : [en]
One of the largest obstacles facing scanning probe microscopy is the constant need to correct flaws in the scanning probe in situ. This is currently a manual, time-consuming process that would benefit greatly from automation. ...
Lire la suite >One of the largest obstacles facing scanning probe microscopy is the constant need to correct flaws in the scanning probe in situ. This is currently a manual, time-consuming process that would benefit greatly from automation. Here, we introduce a convolutional neural network protocol that enables automated recognition of a variety of desirable and undesirable scanning tunneling tip states on both metal and nonmetal surfaces. By combining the best performing models into majority voting ensembles, we find that the desirable states of H:Si(100) can be distinguished with a mean precision of 0.89 and an average receiver-operator-characteristic curve area of 0.95. More generally, high and lowquality tips can be distinguished with a mean precision of 0.96 and near perfect area-under-curve of 0.98. With trivial modifications, we also successfully automatically identify undesirable, non-surface-specific states on surfaces of Au(111) and Cu(111). In these cases, we find mean precisions of 0.95 and 0.75 and area-under-curves of 0.98 and 0.94, respectively. Provided that training data are available, these ensembles therefore enable fully autonomous scanning tunneling state recognition for a wide range of typical scanning conditions.Lire moins >
Lire la suite >One of the largest obstacles facing scanning probe microscopy is the constant need to correct flaws in the scanning probe in situ. This is currently a manual, time-consuming process that would benefit greatly from automation. Here, we introduce a convolutional neural network protocol that enables automated recognition of a variety of desirable and undesirable scanning tunneling tip states on both metal and nonmetal surfaces. By combining the best performing models into majority voting ensembles, we find that the desirable states of H:Si(100) can be distinguished with a mean precision of 0.89 and an average receiver-operator-characteristic curve area of 0.95. More generally, high and lowquality tips can be distinguished with a mean precision of 0.96 and near perfect area-under-curve of 0.98. With trivial modifications, we also successfully automatically identify undesirable, non-surface-specific states on surfaces of Au(111) and Cu(111). In these cases, we find mean precisions of 0.95 and 0.75 and area-under-curves of 0.98 and 0.94, respectively. Provided that training data are available, these ensembles therefore enable fully autonomous scanning tunneling state recognition for a wide range of typical scanning conditions.Lire moins >
Langue :
Anglais
Vulgarisation :
Non
Source :
Fichiers
- https://hal.archives-ouvertes.fr/hal-03133846/document
- Accès libre
- Accéder au document
- http://arxiv.org/pdf/1903.09101
- Accès libre
- Accéder au document
- https://hal.archives-ouvertes.fr/hal-03133846/document
- Accès libre
- Accéder au document
- Gordon_2019_1.5099590.pdf
- Accès libre
- Accéder au document
- 1903.09101
- Accès libre
- Accéder au document
- document
- Accès libre
- Accéder au document