Polarization control of THz emission using ...
Document type :
Compte-rendu et recension critique d'ouvrage
Title :
Polarization control of THz emission using spin-reorientation transition in spintronic heterostructure
Author(s) :
Khusyainov, Dinar [Auteur]
Ovcharenko, Sergei [Auteur]
Gaponov, Mikhail [Auteur]
Buryakov, Arseniy [Auteur]
Klimov, Alexey [Auteur]
Tiercelin, Nicolas [Auteur]
Acoustique Impulsionnelle & Magnéto-Acoustique Non linéaire - Fluides, Interfaces Liquides & Micro-Systèmes - IEMN [AIMAN-FILMS - IEMN]
Laboratoire International associé sur les phénomènes Critiques et Supercritiques en électronique fonctionnelle, acoustique et fluidique [LIA LICS/LEMAC]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Pernod, Philippe [Auteur]
Acoustique Impulsionnelle & Magnéto-Acoustique Non linéaire - Fluides, Interfaces Liquides & Micro-Systèmes - IEMN [AIMAN-FILMS - IEMN]
Laboratoire International associé sur les phénomènes Critiques et Supercritiques en électronique fonctionnelle, acoustique et fluidique [LIA LICS/LEMAC]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Nozdrin, Vadim [Auteur]
Mishina, Elena [Auteur]
Sigov, Alexander [Auteur]
Preobrazhensky, Vladimir [Auteur]
Ovcharenko, Sergei [Auteur]
Gaponov, Mikhail [Auteur]
Buryakov, Arseniy [Auteur]
Klimov, Alexey [Auteur]
Tiercelin, Nicolas [Auteur]

Acoustique Impulsionnelle & Magnéto-Acoustique Non linéaire - Fluides, Interfaces Liquides & Micro-Systèmes - IEMN [AIMAN-FILMS - IEMN]
Laboratoire International associé sur les phénomènes Critiques et Supercritiques en électronique fonctionnelle, acoustique et fluidique [LIA LICS/LEMAC]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Pernod, Philippe [Auteur]

Acoustique Impulsionnelle & Magnéto-Acoustique Non linéaire - Fluides, Interfaces Liquides & Micro-Systèmes - IEMN [AIMAN-FILMS - IEMN]
Laboratoire International associé sur les phénomènes Critiques et Supercritiques en électronique fonctionnelle, acoustique et fluidique [LIA LICS/LEMAC]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Nozdrin, Vadim [Auteur]
Mishina, Elena [Auteur]
Sigov, Alexander [Auteur]
Preobrazhensky, Vladimir [Auteur]
Journal title :
Scientific Reports
Pages :
697
Publisher :
Nature Publishing Group
Publication date :
2021-01-12
ISSN :
2045-2322
English keyword(s) :
Magnetic properties and materials
Magneto-optics
Optoelectronic devices and components
Phase transitions and critical phenomena
Optical spectroscopy
Spintronics
Structural properties
Surfaces
interfaces and thin films
Terahertz optics
Ultrafast lasers
Magneto-optics
Optoelectronic devices and components
Phase transitions and critical phenomena
Optical spectroscopy
Spintronics
Structural properties
Surfaces
interfaces and thin films
Terahertz optics
Ultrafast lasers
HAL domain(s) :
Sciences de l'ingénieur [physics]/Optique / photonique
Sciences de l'ingénieur [physics]/Micro et nanotechnologies/Microélectronique
Sciences de l'ingénieur [physics]/Electromagnétisme
Sciences de l'ingénieur [physics]/Micro et nanotechnologies/Microélectronique
Sciences de l'ingénieur [physics]/Electromagnétisme
English abstract : [en]
Polarization of electromagnetic waves plays an extremely important role in interaction of radiation with matter. In particular, interaction of polarized waves with ordered matter strongly depends on orientation and symmetry ...
Show more >Polarization of electromagnetic waves plays an extremely important role in interaction of radiation with matter. In particular, interaction of polarized waves with ordered matter strongly depends on orientation and symmetry of vibrations of chemical bonds in crystals. In quantum technologies, the polarization of photons is considered as a “degree of freedom”, which is one of the main parameters that ensure efficient quantum computing. However, even for visible light, polarization control is in most cases separated from light emission. In this paper, we report on a new type of polarization control, implemented directly in a spintronic terahertz emitter. The principle of control, realized by a weak magnetic field at room temperature, is based on a spin-reorientation transition (SRT) in an intermetallic heterostructure TbCo2/FeCo with uniaxial in-plane magnetic anisotropy. SRT is implemented under magnetic field of variable strength but of a fixed direction, orthogonal to the easy magnetization axis. Variation of the magnetic field strength in the angular (canted) phase of the SRT causes magnetization rotation without changing its magnitude. The charge current excited by the spin-to-charge conversion is orthogonal to the magnetization. As a result, THz polarization rotates synchronously with magnetization when magnetic field strength changes. Importantly, the radiation intensity does not change in this case. Control of polarization by SRT is applicable regardless of the spintronic mechanism of the THz emission, provided that the polarization direction is determined by the magnetic moment orientation. The results obtained open the prospect for the development of the SRT approach for THz emission control.Show less >
Show more >Polarization of electromagnetic waves plays an extremely important role in interaction of radiation with matter. In particular, interaction of polarized waves with ordered matter strongly depends on orientation and symmetry of vibrations of chemical bonds in crystals. In quantum technologies, the polarization of photons is considered as a “degree of freedom”, which is one of the main parameters that ensure efficient quantum computing. However, even for visible light, polarization control is in most cases separated from light emission. In this paper, we report on a new type of polarization control, implemented directly in a spintronic terahertz emitter. The principle of control, realized by a weak magnetic field at room temperature, is based on a spin-reorientation transition (SRT) in an intermetallic heterostructure TbCo2/FeCo with uniaxial in-plane magnetic anisotropy. SRT is implemented under magnetic field of variable strength but of a fixed direction, orthogonal to the easy magnetization axis. Variation of the magnetic field strength in the angular (canted) phase of the SRT causes magnetization rotation without changing its magnitude. The charge current excited by the spin-to-charge conversion is orthogonal to the magnetization. As a result, THz polarization rotates synchronously with magnetization when magnetic field strength changes. Importantly, the radiation intensity does not change in this case. Control of polarization by SRT is applicable regardless of the spintronic mechanism of the THz emission, provided that the polarization direction is determined by the magnetic moment orientation. The results obtained open the prospect for the development of the SRT approach for THz emission control.Show less >
Language :
Anglais
Popular science :
Non
Source :
Files
- https://hal.archives-ouvertes.fr/hal-03110177/document
- Open access
- Access the document
- https://www.nature.com/articles/s41598-020-80781-5.pdf
- Open access
- Access the document
- https://hal.archives-ouvertes.fr/hal-03110177/document
- Open access
- Access the document
- https://hal.archives-ouvertes.fr/hal-03110177/document
- Open access
- Access the document
- document
- Open access
- Access the document
- s41598-020-80781-5.pdf
- Open access
- Access the document
- s41598-020-80781-5.pdf
- Open access
- Access the document