Ultra-high critical electric field of ...
Document type :
Compte-rendu et recension critique d'ouvrage
Title :
Ultra-high critical electric field of 13.2 MV/cm for Zn-doped p-type β-Ga2O3
Author(s) :
Chikoidze, E. [Auteur]
Groupe d'Etude de la Matière Condensée [GEMAC]
Tchelidze, T. [Auteur]
Ivane Javakhishvili Tbilisi State University [TSU]
Sartel, C. [Auteur]
Groupe d'Etude de la Matière Condensée [GEMAC]
Chi, Z. [Auteur]
Groupe d'Etude de la Matière Condensée [GEMAC]
Kabouche, R. [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Madaci, I. [Auteur]
Groupe d'Etude de la Matière Condensée [GEMAC]
Rubio, C. [Auteur]
ICN2 - Institut Catala de Nanociencia i Nanotecnologia [ICN2]
Mohamed, H. [Auteur]
Groupe d'Etude de la Matière Condensée [GEMAC]
National Research Centre - NRC (EGYPT)
Sallet, V. [Auteur]
Groupe d'Etude de la Matière Condensée [GEMAC]
Medjdoub, Farid [Auteur]
WIde baNd gap materials and Devices - IEMN [WIND - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Perez-Tomas, A. [Auteur]
ICN2 - Institut Catala de Nanociencia i Nanotecnologia [ICN2]
Dumont, Y. [Auteur]
Groupe d'Etude de la Matière Condensée [GEMAC]
Groupe d'Etude de la Matière Condensée [GEMAC]
Tchelidze, T. [Auteur]
Ivane Javakhishvili Tbilisi State University [TSU]
Sartel, C. [Auteur]
Groupe d'Etude de la Matière Condensée [GEMAC]
Chi, Z. [Auteur]
Groupe d'Etude de la Matière Condensée [GEMAC]
Kabouche, R. [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Madaci, I. [Auteur]
Groupe d'Etude de la Matière Condensée [GEMAC]
Rubio, C. [Auteur]
ICN2 - Institut Catala de Nanociencia i Nanotecnologia [ICN2]
Mohamed, H. [Auteur]
Groupe d'Etude de la Matière Condensée [GEMAC]
National Research Centre - NRC (EGYPT)
Sallet, V. [Auteur]
Groupe d'Etude de la Matière Condensée [GEMAC]
Medjdoub, Farid [Auteur]

WIde baNd gap materials and Devices - IEMN [WIND - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Perez-Tomas, A. [Auteur]
ICN2 - Institut Catala de Nanociencia i Nanotecnologia [ICN2]
Dumont, Y. [Auteur]
Groupe d'Etude de la Matière Condensée [GEMAC]
Journal title :
Materials Today Physics
Pages :
100263, 9 pages
Publisher :
Elsevier
Publication date :
2020-12
ISSN :
2542-5293
English keyword(s) :
Ultra-wide band gap
MOCVD growth
p type β-Ga2O3
Electrical properties
Critical Electrical field
MOCVD growth
p type β-Ga2O3
Electrical properties
Critical Electrical field
HAL domain(s) :
Physique [physics]/Matière Condensée [cond-mat]/Science des matériaux [cond-mat.mtrl-sci]
English abstract : [en]
Which the actual critical electrical field of the ultra-wide bandgap semiconductor β-Ga<sub>2</sub>O<sub>3</sub> is? Even that it is usual to find in the literature a given value for the critical field of wide and ultra-wide ...
Show more >Which the actual critical electrical field of the ultra-wide bandgap semiconductor β-Ga<sub>2</sub>O<sub>3</sub> is? Even that it is usual to find in the literature a given value for the critical field of wide and ultra-wide semiconductors such as SiC (3 MV/cm), GaN (3.3 MV/cm), β-Ga<sub>2</sub>O<sub>3</sub> (~8 MV/cm) and diamond (10 MV/cm), this value actually depends on intrinsic and extrinsic factors such as the bandgap energy, material residual impurities or introduced dopants. Indeed, it is well known from 1950’s that reducing the residual doping (N<sub>B</sub>) of the semiconductor layer increases the breakdown voltage capability of a semiconductor media (e.g. as N<sub>B</sub><sup>-3/4</sup> by using the Fulop’s approximation for an abrupt junction). A key limitation is, therefore, the residual donor/acceptor concentration generally found in these materials. Here, we report that doping with amphoteric Zinc a p-type β-Ga<sub>2</sub>O<sub>3</sub> thin films shortens free carrier mean free path (0.37nm), resulting in the ultra-high critical electrical field of 13.2 MV/cm. Therefore, the critical breakdown field can be, at least, four times larger for the emerging Ga<sub>2</sub>O<sub>3</sub> power semiconductor as compared to SiC and GaN. We further explain these wide-reaching experimental facts by using theoretical approaches based on the impact ionization microscopic theory and thermodynamic calculations.Show less >
Show more >Which the actual critical electrical field of the ultra-wide bandgap semiconductor β-Ga<sub>2</sub>O<sub>3</sub> is? Even that it is usual to find in the literature a given value for the critical field of wide and ultra-wide semiconductors such as SiC (3 MV/cm), GaN (3.3 MV/cm), β-Ga<sub>2</sub>O<sub>3</sub> (~8 MV/cm) and diamond (10 MV/cm), this value actually depends on intrinsic and extrinsic factors such as the bandgap energy, material residual impurities or introduced dopants. Indeed, it is well known from 1950’s that reducing the residual doping (N<sub>B</sub>) of the semiconductor layer increases the breakdown voltage capability of a semiconductor media (e.g. as N<sub>B</sub><sup>-3/4</sup> by using the Fulop’s approximation for an abrupt junction). A key limitation is, therefore, the residual donor/acceptor concentration generally found in these materials. Here, we report that doping with amphoteric Zinc a p-type β-Ga<sub>2</sub>O<sub>3</sub> thin films shortens free carrier mean free path (0.37nm), resulting in the ultra-high critical electrical field of 13.2 MV/cm. Therefore, the critical breakdown field can be, at least, four times larger for the emerging Ga<sub>2</sub>O<sub>3</sub> power semiconductor as compared to SiC and GaN. We further explain these wide-reaching experimental facts by using theoretical approaches based on the impact ionization microscopic theory and thermodynamic calculations.Show less >
Language :
Anglais
Popular science :
Non
Source :
Files
- https://hal.archives-ouvertes.fr/hal-02984814/document
- Open access
- Access the document
- https://ddd.uab.cat/pub/artpub/2020/233971/mattodayphy_a2020v15n100263p-Pre.pdf
- Open access
- Access the document
- https://hal.archives-ouvertes.fr/hal-02984814/document
- Open access
- Access the document
- https://hal.archives-ouvertes.fr/hal-02984814/document
- Open access
- Access the document
- document
- Open access
- Access the document
- 2020%20Chikoidze%20High%20electric%20field%20-HAL.pdf
- Open access
- Access the document
- mattodayphy_a2020v15n100263p-Pre.pdf
- Open access
- Access the document