Piezoresistance in defect-engineered silicon
Type de document :
Article dans une revue scientifique: Article original
Titre :
Piezoresistance in defect-engineered silicon
Auteur(s) :
Li, Heng [Auteur]
Laboratoire de physique de la matière condensée [LPMC]
Thayil, Abel [Auteur]
Laboratoire de physique de la matière condensée [LPMC]
Lew, Chris [Auteur]
University of Melbourne
Filoche, Marcel [Auteur]
Laboratoire de physique de la matière condensée [LPMC]
Johnson, Brett [Auteur]
University of Melbourne
Mccallum, Jeff [Auteur]
University of Melbourne
Arscott, Steve [Auteur]
Nano and Microsystems - IEMN [NAM6 - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Rowe, Alistair [Auteur correspondant]
Laboratoire de physique de la matière condensée [LPMC]
Laboratoire de physique de la matière condensée [LPMC]
Thayil, Abel [Auteur]
Laboratoire de physique de la matière condensée [LPMC]
Lew, Chris [Auteur]
University of Melbourne
Filoche, Marcel [Auteur]
Laboratoire de physique de la matière condensée [LPMC]
Johnson, Brett [Auteur]
University of Melbourne
Mccallum, Jeff [Auteur]
University of Melbourne
Arscott, Steve [Auteur]

Nano and Microsystems - IEMN [NAM6 - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Rowe, Alistair [Auteur correspondant]
Laboratoire de physique de la matière condensée [LPMC]
Titre de la revue :
PHYSICAL REVIEW APPLIED
Pagination :
014046, 9 pages
Éditeur :
American Physical Society
Date de publication :
2021-01
ISSN :
2331-7019
Discipline(s) HAL :
Sciences de l'ingénieur [physics]/Micro et nanotechnologies/Microélectronique
Physique [physics]/Matière Condensée [cond-mat]/Science des matériaux [cond-mat.mtrl-sci]
Physique [physics]/Matière Condensée [cond-mat]/Science des matériaux [cond-mat.mtrl-sci]
Résumé en anglais : [en]
The steady-state, space-charge-limited piezoresistance (PZR) of defect-engineered, silicon-on-insulator device layers containing silicon divacancy defects changes sign as a function of applied bias. Above a punch-through ...
Lire la suite >The steady-state, space-charge-limited piezoresistance (PZR) of defect-engineered, silicon-on-insulator device layers containing silicon divacancy defects changes sign as a function of applied bias. Above a punch-through voltage (Vt) corresponding to the onset of a space-charge-limited hole current, the longitudinal ⟨110⟩ PZR π coefficient is π≈65×10−11 Pa−1, similar to the value obtained in charge-neutral, p-type silicon. Below Vt, the mechanical stress dependence of the Shockley-Read-Hall (SRH) recombination parameters, specifically the divacancy trap energy ET that is estimated to vary by approximately 30μV/MPa, yields π≈−25×10−11 Pa−1. The combination of space-charge-limited transport and defect engineering that significantly reduces SRH recombination lifetimes makes this work directly relevant to discussions of giant or anomalous PZR at small strains in nanosilicon whose characteristic dimension is larger than a few nanometers. In this limit the reduced electrostatic dimensionality lowers Vt and amplifies space-charge-limited currents and efficient SRH recombination occurs via surface defects. The results reinforce the growing evidence that in steady state, electromechanically active defects can result in anomalous, but not giant, PZR.Lire moins >
Lire la suite >The steady-state, space-charge-limited piezoresistance (PZR) of defect-engineered, silicon-on-insulator device layers containing silicon divacancy defects changes sign as a function of applied bias. Above a punch-through voltage (Vt) corresponding to the onset of a space-charge-limited hole current, the longitudinal ⟨110⟩ PZR π coefficient is π≈65×10−11 Pa−1, similar to the value obtained in charge-neutral, p-type silicon. Below Vt, the mechanical stress dependence of the Shockley-Read-Hall (SRH) recombination parameters, specifically the divacancy trap energy ET that is estimated to vary by approximately 30μV/MPa, yields π≈−25×10−11 Pa−1. The combination of space-charge-limited transport and defect engineering that significantly reduces SRH recombination lifetimes makes this work directly relevant to discussions of giant or anomalous PZR at small strains in nanosilicon whose characteristic dimension is larger than a few nanometers. In this limit the reduced electrostatic dimensionality lowers Vt and amplifies space-charge-limited currents and efficient SRH recombination occurs via surface defects. The results reinforce the growing evidence that in steady state, electromechanically active defects can result in anomalous, but not giant, PZR.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Projet ANR :
Source :
Fichiers
- http://arxiv.org/pdf/2008.04788v3
- Accès libre
- Accéder au document
- https://hal.archives-ouvertes.fr/hal-03003310/document
- Accès libre
- Accéder au document
- https://hal.archives-ouvertes.fr/hal-03003310/document
- Accès libre
- Accéder au document
- document
- Accès libre
- Accéder au document
- Rowe_2021_PhysRevApplied.15.014046.pdf
- Accès libre
- Accéder au document
- 2008.04788v3
- Accès libre
- Accéder au document
- document
- Accès libre
- Accéder au document
- Rowe_2021_PhysRevApplied.15.014046.pdf
- Accès libre
- Accéder au document