Robustness of elastic properties in polymer ...
Type de document :
Compte-rendu et recension critique d'ouvrage
Titre :
Robustness of elastic properties in polymer nanocomposite films examined over the full volume fraction range
Auteur(s) :
Alonso-Redondo, Elena [Auteur]
Max Planck Institute for Polymer Research
Belliard, Laurent [Auteur]
Institut des Nanosciences de Paris [INSP]
Rolle, K. [Auteur]
Max Planck Institute for Polymer Research
Graczykowski, Bartlomiej [Auteur]
Max Planck Institute for Polymer Research
Tremel, Wolfgang [Auteur]
Johannes Gutenberg - Universität Mainz = Johannes Gutenberg University [JGU]
Djafari-Rouhani, Bahram [Auteur]
Physique - IEMN [PHYSIQUE - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Fytas, George [Auteur]
Max-Planck-Institut für Biophysik - Max Planck Institute of Biophysics [Frankfurt am Main, Germany] [MPIBP]
Max Planck Institute for Polymer Research
Belliard, Laurent [Auteur]
Institut des Nanosciences de Paris [INSP]
Rolle, K. [Auteur]
Max Planck Institute for Polymer Research
Graczykowski, Bartlomiej [Auteur]
Max Planck Institute for Polymer Research
Tremel, Wolfgang [Auteur]
Johannes Gutenberg - Universität Mainz = Johannes Gutenberg University [JGU]
Djafari-Rouhani, Bahram [Auteur]

Physique - IEMN [PHYSIQUE - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Fytas, George [Auteur]
Max-Planck-Institut für Biophysik - Max Planck Institute of Biophysics [Frankfurt am Main, Germany] [MPIBP]
Titre de la revue :
Scientific Reports
Pagination :
16986
Éditeur :
Nature Publishing Group
Date de publication :
2018-12
ISSN :
2045-2322
Mot(s)-clé(s) en anglais :
Nanoparticles
Polymers
Polymers
Discipline(s) HAL :
Sciences de l'ingénieur [physics]/Mécanique [physics.med-ph]/Mécanique des matériaux [physics.class-ph]
Physique [physics]/Matière Condensée [cond-mat]/Science des matériaux [cond-mat.mtrl-sci]
Physique [physics]/Matière Condensée [cond-mat]/Science des matériaux [cond-mat.mtrl-sci]
Résumé en anglais : [en]
Polymers with nanoparticle inclusions are attractive materials because physical properties can be tuned by varying size and volume fraction range. However, elastic behavior can degrade at higher inclusion fractions when ...
Lire la suite >Polymers with nanoparticle inclusions are attractive materials because physical properties can be tuned by varying size and volume fraction range. However, elastic behavior can degrade at higher inclusion fractions when particle-particle contacts become important, and sophisticated measurement techniques are required to study this crossover. Here, we report on the mechanical properties of materials with BaTiO3 nanoparticles (diameters < 10 nm) in a polymer (poly(methyl methacrylate)) matrix, deposited as films in different thickness ranges. Two well-known techniques, time and frequency domain Brillouin light scattering, were employed to probe the composition dependence of their elastic modulus. The time domain experiment revealed the biphasic state of the system at the highest particle volume fraction, whereas frequency domain Brillouin scattering provided comprehensive information on ancillary variables such as refractive index and directionality. Both techniques prove complementary, and can in particular be used to probe the susceptibility of elastic properties in polymer nanocomposites to aging.Lire moins >
Lire la suite >Polymers with nanoparticle inclusions are attractive materials because physical properties can be tuned by varying size and volume fraction range. However, elastic behavior can degrade at higher inclusion fractions when particle-particle contacts become important, and sophisticated measurement techniques are required to study this crossover. Here, we report on the mechanical properties of materials with BaTiO3 nanoparticles (diameters < 10 nm) in a polymer (poly(methyl methacrylate)) matrix, deposited as films in different thickness ranges. Two well-known techniques, time and frequency domain Brillouin light scattering, were employed to probe the composition dependence of their elastic modulus. The time domain experiment revealed the biphasic state of the system at the highest particle volume fraction, whereas frequency domain Brillouin scattering provided comprehensive information on ancillary variables such as refractive index and directionality. Both techniques prove complementary, and can in particular be used to probe the susceptibility of elastic properties in polymer nanocomposites to aging.Lire moins >
Langue :
Anglais
Vulgarisation :
Non
Source :
Fichiers
- https://hal.sorbonne-universite.fr/hal-01930325/document
- Accès libre
- Accéder au document
- https://www.nature.com/articles/s41598-018-35335-1.pdf
- Accès libre
- Accéder au document
- https://hal.sorbonne-universite.fr/hal-01930325/document
- Accès libre
- Accéder au document
- https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6242885
- Accès libre
- Accéder au document
- https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6242885
- Accès libre
- Accéder au document
- https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6242885
- Accès libre
- Accéder au document
- https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6242885
- Accès libre
- Accéder au document
- document
- Accès libre
- Accéder au document
- s41598-018-35335-1.pdf
- Accès libre
- Accéder au document
- document
- Accès libre
- Accéder au document
- s41598-018-35335-1.pdf
- Accès libre
- Accéder au document