Two-dimensional Rutherford-like scattering ...
Document type :
Compte-rendu et recension critique d'ouvrage
Title :
Two-dimensional Rutherford-like scattering in ballistic nanodevices
Author(s) :
Toussaint, S. [Auteur]
Brun, B. [Auteur]
Faniel, S. [Auteur]
Institut de la matière condensée et des nanosciences / Institute of Condensed Matter and Nanosciences [IMCN]
Desplanque, Ludovic [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
EPItaxie et PHYsique des hétérostructures - IEMN [EPIPHY - IEMN]
Wallart, Xavier [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
EPItaxie et PHYsique des hétérostructures - IEMN [EPIPHY - IEMN]
Bayot, V. [Auteur]
Dispositifs Intégrés et Circuits Electroniques Machine Learning Group [DICE - MLG]
Hackens, B. [Auteur]
Dispositifs Intégrés et Circuits Electroniques Machine Learning Group [DICE - MLG]
Brun, B. [Auteur]
Faniel, S. [Auteur]
Institut de la matière condensée et des nanosciences / Institute of Condensed Matter and Nanosciences [IMCN]
Desplanque, Ludovic [Auteur]

Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
EPItaxie et PHYsique des hétérostructures - IEMN [EPIPHY - IEMN]
Wallart, Xavier [Auteur]

Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
EPItaxie et PHYsique des hétérostructures - IEMN [EPIPHY - IEMN]
Bayot, V. [Auteur]
Dispositifs Intégrés et Circuits Electroniques Machine Learning Group [DICE - MLG]
Hackens, B. [Auteur]
Dispositifs Intégrés et Circuits Electroniques Machine Learning Group [DICE - MLG]
Journal title :
Physical Review B: Condensed Matter and Materials Physics (1998-2015)
Publisher :
American Physical Society
Publication date :
2018
ISSN :
1098-0121
HAL domain(s) :
Physique [physics]/Matière Condensée [cond-mat]
Sciences de l'ingénieur [physics]/Micro et nanotechnologies/Microélectronique
Sciences de l'ingénieur [physics]/Micro et nanotechnologies/Microélectronique
English abstract : [en]
Ballistic injection in a nanodevice is a complex process where electrons can be either transmitted or reflected, thereby introducing deviations from the otherwise quantized conductance. In this context, quantum rings (QRs) ...
Show more >Ballistic injection in a nanodevice is a complex process where electrons can be either transmitted or reflected, thereby introducing deviations from the otherwise quantized conductance. In this context, quantum rings (QRs) appear as model geometries: in a semiclassical view, most electrons bounce against the central QR antidot, which strongly reduces injection efficiency. Thanks to an analogy with Rutherford scattering, we show that a local partial depletion of the QR close to the edge of the antidot can counterintuitively ease ballistic electron injection. In contrast, local charge accumulation can focus the semiclassical trajectories on the hard-wall potential and strongly enhance reflection back to the lead. Scanning gate experiments on a ballistic QR and simulations of the conductance of the same device are consistent and agree that the effect is directly proportional to the ratio between the strength of the perturbation and the Fermi energy. Our observation fits the simple Rutherford formalism in two dimensions in the classical limit.Show less >
Show more >Ballistic injection in a nanodevice is a complex process where electrons can be either transmitted or reflected, thereby introducing deviations from the otherwise quantized conductance. In this context, quantum rings (QRs) appear as model geometries: in a semiclassical view, most electrons bounce against the central QR antidot, which strongly reduces injection efficiency. Thanks to an analogy with Rutherford scattering, we show that a local partial depletion of the QR close to the edge of the antidot can counterintuitively ease ballistic electron injection. In contrast, local charge accumulation can focus the semiclassical trajectories on the hard-wall potential and strongly enhance reflection back to the lead. Scanning gate experiments on a ballistic QR and simulations of the conductance of the same device are consistent and agree that the effect is directly proportional to the ratio between the strength of the perturbation and the Fermi energy. Our observation fits the simple Rutherford formalism in two dimensions in the classical limit.Show less >
Language :
Anglais
Popular science :
Non
Source :
Files
- http://arxiv.org/pdf/1804.02457
- Open access
- Access the document
- https://hal.archives-ouvertes.fr/hal-01920618/document
- Open access
- Access the document
- https://hal.archives-ouvertes.fr/hal-01920618/document
- Open access
- Access the document
- document
- Open access
- Access the document
- Toussaint_2018_PhysRevB.98.075310.pdf
- Open access
- Access the document
- 1804.02457
- Open access
- Access the document