Thermal conductivity of deca-nanometric ...
Document type :
Compte-rendu et recension critique d'ouvrage
Title :
Thermal conductivity of deca-nanometric patterned Si membranes by multiscale simulations
Author(s) :
Zaoui, Hayat [Auteur]
Physique - IEMN [PHYSIQUE - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Palla, Pier Luca [Auteur]
Physique - IEMN [PHYSIQUE - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Giordano, Stefano [Auteur]
Acoustique Impulsionnelle & Magnéto-Acoustique Non linéaire - Fluides, Interfaces Liquides & Micro-Systèmes - IEMN [AIMAN-FILMS - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Cleri, Fabrizio [Auteur]
Physique - IEMN [PHYSIQUE - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Verdier, Maxime [Auteur]
Laboratoire d'Energétique et Mécanique Théorique et Appliquée [LEMTA ]
Lacroix, David [Auteur]
Laboratoire d'Energétique et Mécanique Théorique et Appliquée [LEMTA ]
Robillard, Jean-François [Auteur]
Microélectronique Silicium - IEMN [MICROELEC SI - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Termentzidis, Konstantinos [Auteur]
Centre d'Energétique et de Thermique de Lyon [CETHIL]
Laboratoire d'Energétique et Mécanique Théorique et Appliquée [LEMTA ]
Martin, Évelyne [Auteur correspondant]
Physique - IEMN [PHYSIQUE - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Physique - IEMN [PHYSIQUE - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Palla, Pier Luca [Auteur]

Physique - IEMN [PHYSIQUE - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Giordano, Stefano [Auteur]

Acoustique Impulsionnelle & Magnéto-Acoustique Non linéaire - Fluides, Interfaces Liquides & Micro-Systèmes - IEMN [AIMAN-FILMS - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Cleri, Fabrizio [Auteur]

Physique - IEMN [PHYSIQUE - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Verdier, Maxime [Auteur]
Laboratoire d'Energétique et Mécanique Théorique et Appliquée [LEMTA ]
Lacroix, David [Auteur]
Laboratoire d'Energétique et Mécanique Théorique et Appliquée [LEMTA ]
Robillard, Jean-François [Auteur]

Microélectronique Silicium - IEMN [MICROELEC SI - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Termentzidis, Konstantinos [Auteur]
Centre d'Energétique et de Thermique de Lyon [CETHIL]
Laboratoire d'Energétique et Mécanique Théorique et Appliquée [LEMTA ]
Martin, Évelyne [Auteur correspondant]
Physique - IEMN [PHYSIQUE - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Journal title :
International Journal of Heat and Mass Transfer
Pages :
830-835
Publisher :
Elsevier
Publication date :
2018
ISSN :
0017-9310
English keyword(s) :
Thermal conductivity
Silicon membranes
Simulation
Silicon membranes
Simulation
HAL domain(s) :
Sciences de l'ingénieur [physics]/Mécanique [physics.med-ph]/Thermique [physics.class-ph]
Informatique [cs]/Modélisation et simulation
Informatique [cs]/Modélisation et simulation
English abstract : [en]
The hollowing of silicon membranes to form a lattice of cylindrical holes, also called phononic crystal, has been used by several experimental groups willing to fabricate efficient thermoelectric modules. The idea is to ...
Show more >The hollowing of silicon membranes to form a lattice of cylindrical holes, also called phononic crystal, has been used by several experimental groups willing to fabricate efficient thermoelectric modules. The idea is to reduce the thermal conductivity without impacting the electronic conductivity. For several a priori identical materials, i.e. thin films containing periodic cylindrical holes, drastically different levels of thermal conductivity reduction have been reported in the literature: from 1–2 W K−1 m−1 to 15–40 W K−1 m−1, i. e. half the thermal conductivity of the plain membrane. These differences may be due to variations in the geometrical patterns, or to the technological processes specific to each group. It is therefore highly desirable to understand which level of reduction can be expected from the basic concept. In this work, we address the question by applying a fully atomistic framework, the approach-to-equilibrium molecular dynamics (AEMD), to study two deca-nanometric patterns used in the literature and reported respectively with a high and low level of thermal conductivity reduction. For both patterns, the thermal conductivity roughly decreases by a factor 2 only compared to the plain membrane. Thanks to Monte Carlo simulations, in agreement with AEMD for the two patterns, we propose that the origin of stronger reductions could be an increase of the surface roughness during the step of hole fabrication.Show less >
Show more >The hollowing of silicon membranes to form a lattice of cylindrical holes, also called phononic crystal, has been used by several experimental groups willing to fabricate efficient thermoelectric modules. The idea is to reduce the thermal conductivity without impacting the electronic conductivity. For several a priori identical materials, i.e. thin films containing periodic cylindrical holes, drastically different levels of thermal conductivity reduction have been reported in the literature: from 1–2 W K−1 m−1 to 15–40 W K−1 m−1, i. e. half the thermal conductivity of the plain membrane. These differences may be due to variations in the geometrical patterns, or to the technological processes specific to each group. It is therefore highly desirable to understand which level of reduction can be expected from the basic concept. In this work, we address the question by applying a fully atomistic framework, the approach-to-equilibrium molecular dynamics (AEMD), to study two deca-nanometric patterns used in the literature and reported respectively with a high and low level of thermal conductivity reduction. For both patterns, the thermal conductivity roughly decreases by a factor 2 only compared to the plain membrane. Thanks to Monte Carlo simulations, in agreement with AEMD for the two patterns, we propose that the origin of stronger reductions could be an increase of the surface roughness during the step of hole fabrication.Show less >
Language :
Anglais
Popular science :
Non
ANR Project :
Source :
Files
- https://hal.archives-ouvertes.fr/hal-01826181/document
- Open access
- Access the document
- https://hal.archives-ouvertes.fr/hal-01826181/document
- Open access
- Access the document
- https://hal.archives-ouvertes.fr/hal-01826181/document
- Open access
- Access the document
- document
- Open access
- Access the document
- j-ijheatmasstransfer-2018-06-004.pdf
- Open access
- Access the document
- j-ijheatmasstransfer-2018-06-004.pdf
- Open access
- Access the document