From semiconductor nanocrystals to artificial ...
Type de document :
Autre communication scientifique (congrès sans actes - poster - séminaire...): Communication dans un congrès avec actes
Titre :
From semiconductor nanocrystals to artificial graphene and topological insulator
Auteur(s) :
Kalesaki, Efterpi [Auteur]
Delerue, Christophe [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Morais Smith, Cristiane [Auteur]
Institute for Theoretical Physics [Utrecht]
Beugeling, Wouter [Auteur]
Allan, Guy [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Vanmaekelbergh, Daniel [Auteur]
Debye Institute for Nanomaterials Science
Delerue, Christophe [Auteur]

Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Morais Smith, Cristiane [Auteur]
Institute for Theoretical Physics [Utrecht]
Beugeling, Wouter [Auteur]
Allan, Guy [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Vanmaekelbergh, Daniel [Auteur]
Debye Institute for Nanomaterials Science
Titre de la manifestation scientifique :
European Materials Research Society Spring Meeting, E-MRS Spring 2014, Symposium F - Established and emerging nanocolloids : from synthesis & characterization to applications
Ville :
Lille
Pays :
France
Date de début de la manifestation scientifique :
2014
Discipline(s) HAL :
Sciences de l'ingénieur [physics]
Résumé en anglais : [en]
Recent advancements in colloidal chemistry indicate that two-dimensional single-crystalline sheets of semiconductors forming a honeycomb lattice can be synthesized from semiconductor nanocrystals [1]. We perform atomistic ...
Lire la suite >Recent advancements in colloidal chemistry indicate that two-dimensional single-crystalline sheets of semiconductors forming a honeycomb lattice can be synthesized from semiconductor nanocrystals [1]. We perform atomistic tight-binding calculations of the band structure of CdSe sheets with such a nano-geometry [2]. We predict in the conduction band Dirac cones at two distinct energies and nontrivial flat bands and, in the valence band, topological edge states. These edge states are present in several electronic gaps opened in the valence band by the spin-orbit coupling and the quantum confinement in the honeycomb geometry. The lowest Dirac conduction band has s-orbital character and is equivalent to the pi bands of graphene but with renormalized couplings. The conduction bands higher in energy have no counterpart in graphene; they combine a Dirac cone and flat bands because of their p-orbital character. These systems emerge as remarkable platforms for studying complex electronic phases starting from conventional semiconductors. [1] W. H. Evers, B. Goris, S. Bals, M. Casavola, J. de Graaf, R. van Roij, M. Dijkstra, and D. Vanmaekelbergh, Nano Lett. 13, 2317 (2013). [2] E. Kalesaki, C. Delerue, C. Morais Smith, W. Beugeling, G. Allan, D. Vanmaekelbergh, Phys. Rev. X, in press.Lire moins >
Lire la suite >Recent advancements in colloidal chemistry indicate that two-dimensional single-crystalline sheets of semiconductors forming a honeycomb lattice can be synthesized from semiconductor nanocrystals [1]. We perform atomistic tight-binding calculations of the band structure of CdSe sheets with such a nano-geometry [2]. We predict in the conduction band Dirac cones at two distinct energies and nontrivial flat bands and, in the valence band, topological edge states. These edge states are present in several electronic gaps opened in the valence band by the spin-orbit coupling and the quantum confinement in the honeycomb geometry. The lowest Dirac conduction band has s-orbital character and is equivalent to the pi bands of graphene but with renormalized couplings. The conduction bands higher in energy have no counterpart in graphene; they combine a Dirac cone and flat bands because of their p-orbital character. These systems emerge as remarkable platforms for studying complex electronic phases starting from conventional semiconductors. [1] W. H. Evers, B. Goris, S. Bals, M. Casavola, J. de Graaf, R. van Roij, M. Dijkstra, and D. Vanmaekelbergh, Nano Lett. 13, 2317 (2013). [2] E. Kalesaki, C. Delerue, C. Morais Smith, W. Beugeling, G. Allan, D. Vanmaekelbergh, Phys. Rev. X, in press.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Non spécifiée
Vulgarisation :
Non
Source :