Room-temperature quantum spin Hall effect ...
Document type :
Autre communication scientifique (congrès sans actes - poster - séminaire...): Communication dans un congrès avec actes
Title :
Room-temperature quantum spin Hall effect in HgTe honeycomb superlattices
Author(s) :
Morais Smith, Cristiane [Auteur]
Institute for Theoretical Physics [Utrecht]
Beugeling, Wouter [Auteur]
Max Planck Institute for the Physics of Complex Systems [MPI-PKS]
Kalesaki, Efterpi [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Niquet, Yann-Michel [Auteur]
Service de Physique des Matériaux et Microstructures [SP2M - UMR 9002]
Delerue, Christophe [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Vanmaekelbergh, Daniel [Auteur]
Debye Institute for Nanomaterials Science
Institute for Theoretical Physics [Utrecht]
Beugeling, Wouter [Auteur]
Max Planck Institute for the Physics of Complex Systems [MPI-PKS]
Kalesaki, Efterpi [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Niquet, Yann-Michel [Auteur]
Service de Physique des Matériaux et Microstructures [SP2M - UMR 9002]
Delerue, Christophe [Auteur]

Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Vanmaekelbergh, Daniel [Auteur]
Debye Institute for Nanomaterials Science
Conference title :
American Physical Society March Meeting, APS March Meeting 2014, Session B31 - Focus Session : Computational Discovery and Design of New Materials II
City :
Denver, CO
Country :
Etats-Unis d'Amérique
Start date of the conference :
2014
English abstract : [en]
The recent experimental realization of self-assembled honeycomb superlattices of truncated semiconducting nanocrystals has opened a new path to engineer graphene-like structures. Atomistic band-structure calculations for ...
Show more >The recent experimental realization of self-assembled honeycomb superlattices of truncated semiconducting nanocrystals has opened a new path to engineer graphene-like structures. Atomistic band-structure calculations for honeycomb lattices of PbSe and CdSe have shown a rich band structure, with Dirac cones at the s- as well as at the p-bands, in addition to a flat p-band. By controlling the chemical composition of the nanocrystals, lattices with strong spin-orbit coupling can be artificially designed. We show that for HgTe a huge non-trivial gap, of order of 50 meV, opens at the K-points. We calculate the edge states using both, an atomistic calculation that takes into account 106 atomic orbitals per unit cell, as well as an effective 16-bands tight-binding model, and find that the quantum spin Hall effect should be observable in this material at temperatures of the order of room temperature.Show less >
Show more >The recent experimental realization of self-assembled honeycomb superlattices of truncated semiconducting nanocrystals has opened a new path to engineer graphene-like structures. Atomistic band-structure calculations for honeycomb lattices of PbSe and CdSe have shown a rich band structure, with Dirac cones at the s- as well as at the p-bands, in addition to a flat p-band. By controlling the chemical composition of the nanocrystals, lattices with strong spin-orbit coupling can be artificially designed. We show that for HgTe a huge non-trivial gap, of order of 50 meV, opens at the K-points. We calculate the edge states using both, an atomistic calculation that takes into account 106 atomic orbitals per unit cell, as well as an effective 16-bands tight-binding model, and find that the quantum spin Hall effect should be observable in this material at temperatures of the order of room temperature.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
Source :