A three-dimensional Monte Carlo model for ...
Type de document :
Article dans une revue scientifique: Article original
DOI :
Titre :
A three-dimensional Monte Carlo model for the simulation of nanoelectronic devices
Auteur(s) :
Sadi, T. [Auteur]
Thobel, Jean-Luc [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Thobel, Jean-Luc [Auteur]

Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Titre de la revue :
INTERNATIONAL JOURNAL OF NUMERICAL MODELLING: ELECTRONIC NETWORKS, DEVICES AND FIELDS
Pagination :
200-214
Éditeur :
Wiley
Date de publication :
2010
ISSN :
0894-3370
Mot(s)-clé(s) en anglais :
Monte Carlo
Semiconductor nanodevice simulation
Three-dimensional modelling
Semiconductor nanodevice simulation
Three-dimensional modelling
Discipline(s) HAL :
Sciences de l'ingénieur [physics]
Résumé en anglais : [en]
We present a three-dimensional (3D) semi-classical ensemble Monte Carlo model newly developed to simulate a variety of nanoelectronic devices. The characteristics of the 3D model are compared with the widely used two-dimensional ...
Lire la suite >We present a three-dimensional (3D) semi-classical ensemble Monte Carlo model newly developed to simulate a variety of nanoelectronic devices. The characteristics of the 3D model are compared with the widely used two-dimensional (2D) models. The advantages of our model, in terms of accuracy in modelling the physics behind the operation of nanodevices, are presented by applying it to T-branch junctions based on InGaAs/InAlAs heterostructures. Simulation of a T-branch junction with a Schottky gate terminal is presented, using both 2D and 3D models, demonstrating the necessity of using 3D simulation models to study the physics of complex-geometry nanostructures.Lire moins >
Lire la suite >We present a three-dimensional (3D) semi-classical ensemble Monte Carlo model newly developed to simulate a variety of nanoelectronic devices. The characteristics of the 3D model are compared with the widely used two-dimensional (2D) models. The advantages of our model, in terms of accuracy in modelling the physics behind the operation of nanodevices, are presented by applying it to T-branch junctions based on InGaAs/InAlAs heterostructures. Simulation of a T-branch junction with a Schottky gate terminal is presented, using both 2D and 3D models, demonstrating the necessity of using 3D simulation models to study the physics of complex-geometry nanostructures.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Non spécifiée
Vulgarisation :
Non
Source :
Fichiers
- https://api.istex.fr/ark:/67375/WNG-X69GTFF9-1/fulltext.pdf?sid=hal
- Accès libre
- Accéder au document
- https://api.istex.fr/ark:/67375/WNG-X69GTFF9-1/fulltext.pdf?sid=hal
- Accès libre
- Accéder au document
- https://api.istex.fr/ark:/67375/WNG-X69GTFF9-1/fulltext.pdf?sid=hal
- Accès libre
- Accéder au document
- https://api.istex.fr/ark:/67375/WNG-X69GTFF9-1/fulltext.pdf?sid=hal
- Accès libre
- Accéder au document
- https://api.istex.fr/ark:/67375/WNG-X69GTFF9-1/fulltext.pdf?sid=hal
- Accès libre
- Accéder au document
- https://api.istex.fr/ark:/67375/WNG-X69GTFF9-1/fulltext.pdf?sid=hal
- Accès libre
- Accéder au document
- fulltext.pdf
- Accès libre
- Accéder au document