Automatic Modulation Recognition Using ...
Type de document :
Compte-rendu et recension critique d'ouvrage
DOI :
Titre :
Automatic Modulation Recognition Using Wavelet Transform and Neural Networks in Wireless Systems
Auteur(s) :
Hassan, Kais [Auteur]
Laboratoire Electronique, Ondes et Signaux pour les Transports [INRETS/LEOST]
Dayoub, Iyad [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Hamouda, Walaa [Auteur]
Department of Computer Science and Software Engineering [Montreal] [CSE]
Berbineau, Marion [Auteur]
Laboratoire Electronique, Ondes et Signaux pour les Transports [INRETS/LEOST]
Laboratoire Electronique, Ondes et Signaux pour les Transports [INRETS/LEOST]
Dayoub, Iyad [Auteur]

Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Hamouda, Walaa [Auteur]
Department of Computer Science and Software Engineering [Montreal] [CSE]
Berbineau, Marion [Auteur]
Laboratoire Electronique, Ondes et Signaux pour les Transports [INRETS/LEOST]
Titre de la revue :
EURASIP Journal on Advances in Signal Processing
Pagination :
13
Éditeur :
SpringerOpen
Date de publication :
2010
ISSN :
1687-6172
Discipline(s) HAL :
Informatique [cs]/Modélisation et simulation
Résumé en anglais : [en]
Modulation type is one of the most important characteristics used in signal wave form identification. In this paper, an algorithm for automatic digital modulation recognition is proposed. The proposed algorithm is verified ...
Lire la suite >Modulation type is one of the most important characteristics used in signal wave form identification. In this paper, an algorithm for automatic digital modulation recognition is proposed. The proposed algorithm is verified using higher-order statistical moments (HOM) of continuous wavelet transform (CWT) as a features set. A multilayer feed-forward neural network trained with resilient backpropagation learning algorithm is proposed as a classifier. The purpose is to discriminate among different M-ary shift keying modulation schemes and the modulation order without any priori signal information. Pre-processing and features subset selection using principal component analysis is used to reduce the network complexity and to improve the classifier's performance. The proposed algorithm is evaluated through confusion matrix and false recognition probability. The proposed classifier is shown to be capable of recognizing the modulation scheme with high accuracy over wide signal-to-noise ratio (SNR) range over both additive white Gaussian noise (AWGN) and different fading channels.Lire moins >
Lire la suite >Modulation type is one of the most important characteristics used in signal wave form identification. In this paper, an algorithm for automatic digital modulation recognition is proposed. The proposed algorithm is verified using higher-order statistical moments (HOM) of continuous wavelet transform (CWT) as a features set. A multilayer feed-forward neural network trained with resilient backpropagation learning algorithm is proposed as a classifier. The purpose is to discriminate among different M-ary shift keying modulation schemes and the modulation order without any priori signal information. Pre-processing and features subset selection using principal component analysis is used to reduce the network complexity and to improve the classifier's performance. The proposed algorithm is evaluated through confusion matrix and false recognition probability. The proposed classifier is shown to be capable of recognizing the modulation scheme with high accuracy over wide signal-to-noise ratio (SNR) range over both additive white Gaussian noise (AWGN) and different fading channels.Lire moins >
Langue :
Anglais
Vulgarisation :
Non
Source :
Fichiers
- https://hal.archives-ouvertes.fr/hal-00542402/document
- Accès libre
- Accéder au document
- https://asp-eurasipjournals.springeropen.com/track/pdf/10.1155/2010/532898
- Accès libre
- Accéder au document
- https://hal.archives-ouvertes.fr/hal-00542402/document
- Accès libre
- Accéder au document
- https://hal.archives-ouvertes.fr/hal-00542402/document
- Accès libre
- Accéder au document
- document
- Accès libre
- Accéder au document
- hindawi_eurasip_id532898.pdf
- Accès libre
- Accéder au document
- 532898
- Accès libre
- Accéder au document
- 532898
- Accès libre
- Accéder au document