A 60 GHz high power composite channel ...
Document type :
Communication dans un congrès avec actes
Title :
A 60 GHz high power composite channel GaInAs/InP HEMT on InP substrate with Lg=0.15 µm
Author(s) :
Boudrissa, Mustafa [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Delos, Elisabet [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Wallart, Xavier [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Théron, Didier [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
De Jaeger, Jean-Claude [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Delos, Elisabet [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Wallart, Xavier [Auteur]

Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Théron, Didier [Auteur]

Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
De Jaeger, Jean-Claude [Auteur]

Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Conference title :
Conference Proceedings. 2001 International Conference on Indium Phosphide and Related Materials. 13th IPRM
City :
Nara
Country :
Japon
Start date of the conference :
2001-05-14
Book title :
Proceedings of the 13th International Conference on Indium Phosphide and Related Materials, IPRM 2001
Publisher :
IEEE, Piscataway, NJ, USA
Publication date :
2001
English keyword(s) :
Indium phosphide
HEMTs
Substrates
Impact ionization
Doping
Conducting materials
Epitaxial growth
Electrons
Frequency
Temperature
HEMTs
Substrates
Impact ionization
Doping
Conducting materials
Epitaxial growth
Electrons
Frequency
Temperature
HAL domain(s) :
Sciences de l'ingénieur [physics]
English abstract : [en]
We have improved power performance by studying three different GaInAs/InP composite channel structures. Also, different gate to drain extension devices have been processed. By using composite channel devices, we benefit ...
Show more >We have improved power performance by studying three different GaInAs/InP composite channel structures. Also, different gate to drain extension devices have been processed. By using composite channel devices, we benefit from the better ionization threshold energy of InP compared to GaInAs (1.69 eV against 0.92 eV). The difference of conduction band offset between the two materials (/spl Delta/E/sub C/=0.2 eV) makes possible electron transfer from GaInAs to InP layers with the same electronic properties. New process technologies have been applied to compare these structures. The gate current resulting from the impact ionization phenomena is reduced to 30 /spl mu/A at V/sub DS/=4.5 V for a large extension device, which constitute the best result among the three structures. Also, we improve power performances at 60 GHz by reducing the GaInAs channel width and substituting delta doping by bulk doping. The best device performance is 422 mW/mm at V/sub DS/=3 V and V/sub GS/=0.7 V.Show less >
Show more >We have improved power performance by studying three different GaInAs/InP composite channel structures. Also, different gate to drain extension devices have been processed. By using composite channel devices, we benefit from the better ionization threshold energy of InP compared to GaInAs (1.69 eV against 0.92 eV). The difference of conduction band offset between the two materials (/spl Delta/E/sub C/=0.2 eV) makes possible electron transfer from GaInAs to InP layers with the same electronic properties. New process technologies have been applied to compare these structures. The gate current resulting from the impact ionization phenomena is reduced to 30 /spl mu/A at V/sub DS/=4.5 V for a large extension device, which constitute the best result among the three structures. Also, we improve power performances at 60 GHz by reducing the GaInAs channel width and substituting delta doping by bulk doping. The best device performance is 422 mW/mm at V/sub DS/=3 V and V/sub GS/=0.7 V.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
Source :