Joint latent class model: Simulation study ...
Document type :
Article dans une revue scientifique: Article original
PMID :
Permalink :
Title :
Joint latent class model: Simulation study of model properties and application to amyotrophic lateral sclerosis disease.
Author(s) :
Kyheng, MaÉva [Auteur]
Evaluation des technologies de santé et des pratiques médicales - ULR 2694 [METRICS]
Babykina, Génia [Auteur]
Evaluation des technologies de santé et des pratiques médicales - ULR 2694 [METRICS]
METRICS : Evaluation des technologies de santé et des pratiques médicales - ULR 2694
Ternynck, Camille [Auteur]
Evaluation des technologies de santé et des pratiques médicales - ULR 2694 [METRICS]
DEVOS, DAVID [Auteur]
Lille Neurosciences & Cognition (LilNCog) - U 1172
Labreuche, Julien [Auteur]
Evaluation des technologies de santé et des pratiques médicales - ULR 2694 [METRICS]
METRICS : Evaluation des technologies de santé et des pratiques médicales - ULR 2694
Duhamel, Alain [Auteur]
Evaluation des technologies de santé et des pratiques médicales - ULR 2694 [METRICS]
Ternynck, Camille [Auteur]
Evaluation des technologies de santé et des pratiques médicales - ULR 2694 [METRICS]
Babykina, Génia [Auteur]
Evaluation des technologies de santé et des pratiques médicales - ULR 2694 [METRICS]
METRICS : Evaluation des technologies de santé et des pratiques médicales - ULR 2694
Ternynck, Camille [Auteur]
Evaluation des technologies de santé et des pratiques médicales - ULR 2694 [METRICS]
DEVOS, DAVID [Auteur]
Lille Neurosciences & Cognition (LilNCog) - U 1172
Labreuche, Julien [Auteur]
Evaluation des technologies de santé et des pratiques médicales - ULR 2694 [METRICS]
METRICS : Evaluation des technologies de santé et des pratiques médicales - ULR 2694
Duhamel, Alain [Auteur]
Evaluation des technologies de santé et des pratiques médicales - ULR 2694 [METRICS]
Ternynck, Camille [Auteur]
Journal title :
BMC Medical Research Methodology
Abbreviated title :
BMC Med Res Methodol
Volume number :
21
Pages :
198
Publication date :
2021-09-30
ISSN :
1471-2288
English keyword(s) :
Amyotrophic lateral sclerosis
Joint model
Latent classes
Linear mixed model
MLE properties
Monte Carlo simulations
Survival analysis
Joint model
Latent classes
Linear mixed model
MLE properties
Monte Carlo simulations
Survival analysis
HAL domain(s) :
Sciences du Vivant [q-bio]/Médecine humaine et pathologie/Physiologie [q-bio.TO]
English abstract : [en]
In many clinical applications, evolution of a longitudinal marker is censored by an event occurrence, and, symmetrically, event occurrence can be influenced by the longitudinal marker evolution. In such frameworks joint ...
Show more >In many clinical applications, evolution of a longitudinal marker is censored by an event occurrence, and, symmetrically, event occurrence can be influenced by the longitudinal marker evolution. In such frameworks joint modeling is of high interest. The Joint Latent Class Model (JLCM) allows to stratify the population into groups (classes) of patients that are homogeneous both with respect to the evolution of a longitudinal marker and to the occurrence of an event; this model is widely employed in real-life applications. However, the finite sample-size properties of this model remain poorly explored. In the present paper, a simulation study is carried out to assess the impact of the number of individuals, of the censoring rate and of the degree of class separation on the finite sample size properties of the JLCM. A real-life application from the neurology domain is also presented. This study assesses the precision of class membership prediction and the impact of covariates omission on the model parameter estimates. Simulation study reveals some departures from normality of the model for survival sub-model parameters. The censoring rate and the number of individuals impact the relative bias of parameters, especially when the classes are weakly distinguished. In real-data application the observed heterogeneity on individual profiles in terms of a longitudinal marker evolution and of the event occurrence remains after adjusting to clinically relevant and available covariates; CONCLUSION: The JLCM properties have been evaluated. We have illustrated the discovery in practice and highlights the usefulness of the joint models with latent classes in this kind of data even with pre-specified factors. We made some recommendations for the use of this model and for future research.Show less >
Show more >In many clinical applications, evolution of a longitudinal marker is censored by an event occurrence, and, symmetrically, event occurrence can be influenced by the longitudinal marker evolution. In such frameworks joint modeling is of high interest. The Joint Latent Class Model (JLCM) allows to stratify the population into groups (classes) of patients that are homogeneous both with respect to the evolution of a longitudinal marker and to the occurrence of an event; this model is widely employed in real-life applications. However, the finite sample-size properties of this model remain poorly explored. In the present paper, a simulation study is carried out to assess the impact of the number of individuals, of the censoring rate and of the degree of class separation on the finite sample size properties of the JLCM. A real-life application from the neurology domain is also presented. This study assesses the precision of class membership prediction and the impact of covariates omission on the model parameter estimates. Simulation study reveals some departures from normality of the model for survival sub-model parameters. The censoring rate and the number of individuals impact the relative bias of parameters, especially when the classes are weakly distinguished. In real-data application the observed heterogeneity on individual profiles in terms of a longitudinal marker evolution and of the event occurrence remains after adjusting to clinically relevant and available covariates; CONCLUSION: The JLCM properties have been evaluated. We have illustrated the discovery in practice and highlights the usefulness of the joint models with latent classes in this kind of data even with pre-specified factors. We made some recommendations for the use of this model and for future research.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
Administrative institution(s) :
Université de Lille
CHU Lille
CHU Lille
Submission date :
2021-10-08T10:13:54Z
2021-10-22T09:50:52Z
2021-10-22T09:52:59Z
2021-10-22T09:54:10Z
2022-02-02T09:29:26Z
2021-10-22T09:50:52Z
2021-10-22T09:52:59Z
2021-10-22T09:54:10Z
2022-02-02T09:29:26Z
Files
- joint latent class.pdf
- Version éditeur
- Open access
- Access the document