• English
    • français
  • Help
  •  | 
  • Contact
  •  | 
  • About
  •  | 
  • Login
  • HAL portal
  •  | 
  • Pages Pro
  • EN
  •  / 
  • FR
View Item 
  •   LillOA Home
  • Liste des unités
  • Lille Économie Management (LEM) - UMR 9221
  • View Item
  •   LillOA Home
  • Liste des unités
  • Lille Économie Management (LEM) - UMR 9221
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Detection and segmentation of erythrocytes ...
  • BibTeX
  • CSV
  • Excel
  • RIS

Document type :
Article dans une revue scientifique: Article original
DOI :
10.1255/jsi.2020.a10
Title :
Detection and segmentation of erythrocytes in multispectral label-free blood smear images for automatic cell counting
Author(s) :
Doumun, Mékapeu Solange [Auteur]
Institut National Polytechnique Félix Houphouët-Boigny [Yamoussoukro] [INP-HB]
Lille économie management - UMR 9221 [LEM]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Dabo-Niang, Sophie [Auteur]
MOdel for Data Analysis and Learning [MODAL]
Zoueu, Jérémie [Auteur]
Institut National Polytechnique Félix Houphouët-Boigny [Yamoussoukro] [INP-HB]
Journal title :
Journal of Spectral Imaging
Publisher :
IM Publications
Publication date :
2020-09-09
English keyword(s) :
multispectral imaging
segmentation
malaria
automatic diagnosis
image analysis
HAL domain(s) :
Mathématiques [math]/Statistiques [math.ST]
English abstract : [en]
In this work we propose an efficient approach to image segmentation for multispectral images of unstained blood films and automatic counting of erythrocytes. Our method takes advantage of Beer–Lambert’s law by using, first, ...
Show more >
In this work we propose an efficient approach to image segmentation for multispectral images of unstained blood films and automatic counting of erythrocytes. Our method takes advantage of Beer–Lambert’s law by using, first, a statistical standardisation equation applied to transmittance images, followed by the local adaptive threshold to detect the blood cells and hysteresis contour closing to obtain the complete blood cell boundaries, and finally the watershed algorithm is used. With this method, image pre-processing is not required, which leads to time savings. We obtained the following results that show that our technique is effective, efficient and fast: Precision of 98.47 % and Recall of 98.23 %, a degree of precision (F-Measurement) of 98.34 % and an Accuracy of 96.75 %.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
Collections :
  • Lille Économie Management (LEM) - UMR 9221
Source :
Harvested from HAL
Files
Thumbnail
  • I09_a10.pdf
  • Open access
  • Access the document
Université de Lille

Mentions légales
Accessibilité : non conforme
Université de Lille © 2017