• English
    • français
  • Help
  •  | 
  • Contact
  •  | 
  • About
  •  | 
  • Login
  • HAL portal
  •  | 
  • Pages Pro
  • EN
  •  / 
  • FR
View Item 
  •   LillOA Home
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • View Item
  •   LillOA Home
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A kernel-based approach to non-stationary ...
  • BibTeX
  • CSV
  • Excel
  • RIS

Document type :
Communication dans un congrès avec actes
Title :
A kernel-based approach to non-stationary reinforcement learning in metric spaces
Author(s) :
Domingues, Omar [Auteur]
Scool [Scool]
Ménard, Pierre [Auteur]
Otto-von-Guericke-Universität Magdeburg = Otto-von-Guericke University [Magdeburg] [OVGU]
Pirotta, Matteo [Auteur]
Facebook AI Research [Paris] [FAIR]
Kaufmann, Emilie [Auteur] refId
Scool [Scool]
Valko, Michal [Auteur] refId
DeepMind [Paris]
Conference title :
International Conference on Artificial Intelligence and Statistics
City :
San Diego / Virtual
Country :
Etats-Unis d'Amérique
Start date of the conference :
2021-04-13
HAL domain(s) :
Statistiques [stat]/Machine Learning [stat.ML]
English abstract : [en]
In this work, we propose KeRNS: an algorithm for episodic reinforcement learning in nonstationary Markov Decision Processes (MDPs) whose state-action set is endowed with a metric. Using a non-parametric model of the MDP ...
Show more >
In this work, we propose KeRNS: an algorithm for episodic reinforcement learning in nonstationary Markov Decision Processes (MDPs) whose state-action set is endowed with a metric. Using a non-parametric model of the MDP built with time-dependent kernels, we prove a regret bound that scales with the covering dimension of the state-action space and the total variation of the MDP with time, which quantifies its level of non-stationarity. Our method generalizes previous approaches based on sliding windows and exponential discounting used to handle changing environments. We further propose a practical implementation of KeRNS, we analyze its regret and validate it experimentally.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
Collections :
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
Source :
Harvested from HAL
Files
Thumbnail
  • https://hal.inria.fr/hal-03289026/document
  • Open access
  • Access the document
Thumbnail
  • https://hal.inria.fr/hal-03289026/document
  • Open access
  • Access the document
Thumbnail
  • https://hal.inria.fr/hal-03289026/document
  • Open access
  • Access the document
Université de Lille

Mentions légales
Université de Lille © 2017