On The Relationship Between Differential ...
Type de document :
Communication dans un congrès avec actes
Titre :
On The Relationship Between Differential Algebra and Tropical Differential Algebraic Geometry
Auteur(s) :
Boulier, François [Auteur]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Falkensteiner, Sebastian [Auteur]
University of Linz - Johannes Kepler Universität Linz [JKU]
Noordman, Marc Paul [Auteur]
Bernoulli Institute for Mathematics for Mathematics, Computer Science and Artificial Intelligence Groningen,
Sanchez, Omar Leon [Auteur]
University of Manchester [Manchester]

Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Falkensteiner, Sebastian [Auteur]
University of Linz - Johannes Kepler Universität Linz [JKU]
Noordman, Marc Paul [Auteur]
Bernoulli Institute for Mathematics for Mathematics, Computer Science and Artificial Intelligence Groningen,
Sanchez, Omar Leon [Auteur]
University of Manchester [Manchester]
Titre de la manifestation scientifique :
Computer Algebra in Scientific Computing
Ville :
Sochi
Pays :
Russie
Date de début de la manifestation scientifique :
2021-09
Titre de la revue :
LNCS
Éditeur :
Springer
Date de publication :
2021-09
Discipline(s) HAL :
Informatique [cs]/Calcul formel [cs.SC]
Mathématiques [math]/Algèbre commutative [math.AC]
Mathématiques [math]/Algèbre commutative [math.AC]
Résumé en anglais : [en]
This paper presents the relationship between differential algebra and tropical differential algebraic geometry, mostly focusing on the existence problem of formal power series solutions for systems of polynomial ODE and ...
Lire la suite >This paper presents the relationship between differential algebra and tropical differential algebraic geometry, mostly focusing on the existence problem of formal power series solutions for systems of polynomial ODE and PDE. Moreover, it improves an approximation theorem involved in the proof of the Fundamental Theorem of tropical differential algebraic geometry which permits to improve this latter by dropping the base field uncountability hypothesis used in the original version.Lire moins >
Lire la suite >This paper presents the relationship between differential algebra and tropical differential algebraic geometry, mostly focusing on the existence problem of formal power series solutions for systems of polynomial ODE and PDE. Moreover, it improves an approximation theorem involved in the proof of the Fundamental Theorem of tropical differential algebraic geometry which permits to improve this latter by dropping the base field uncountability hypothesis used in the original version.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Projet ANR :
Collections :
Source :
Fichiers
- https://hal.archives-ouvertes.fr/hal-03225922v2/document
- Accès libre
- Accéder au document
- https://hal.archives-ouvertes.fr/hal-03225922v2/document
- Accès libre
- Accéder au document
- https://hal.archives-ouvertes.fr/hal-03225922v2/document
- Accès libre
- Accéder au document
- document
- Accès libre
- Accéder au document
- paper-10.pdf
- Accès libre
- Accéder au document