Computing Difference Abstractions of Linear ...
Type de document :
Article dans une revue scientifique: Article original
Titre :
Computing Difference Abstractions of Linear Equation Systems
Auteur(s) :
Allart, Emilie [Auteur]
BioComputing
Niehren, Joachim [Auteur]
BioComputing
Linking Dynamic Data [LINKS]
Versari, Cristian [Auteur]
BioComputing
BioComputing
Niehren, Joachim [Auteur]

BioComputing
Linking Dynamic Data [LINKS]
Versari, Cristian [Auteur]

BioComputing
Titre de la revue :
Theoretical Computer Science
Éditeur :
Elsevier
Date de publication :
2021
ISSN :
0304-3975
Mot(s)-clé(s) en anglais :
boolean abstraction
metabolic networks
synthetic biology
systems biology
reaction networks
gene knockout prediction
first-order definitions
constraint programming
abstract interpretation
metabolic networks
synthetic biology
systems biology
reaction networks
gene knockout prediction
first-order definitions
constraint programming
abstract interpretation
Discipline(s) HAL :
Informatique [cs]/Bio-informatique [q-bio.QM]
Informatique [cs]/Calcul formel [cs.SC]
Mathématiques [math]/Logique [math.LO]
Informatique [cs]/Calcul formel [cs.SC]
Mathématiques [math]/Logique [math.LO]
Résumé en anglais : [en]
Abstract interpretation was proposed for predicting changes of reaction networks with partial kinetic information in systems biology. This requires to compute the set of difference abstractions of a system of linear equations ...
Lire la suite >Abstract interpretation was proposed for predicting changes of reaction networks with partial kinetic information in systems biology. This requires to compute the set of difference abstractions of a system of linear equations under nonlinear constraints. We present the first practical algorithm that can compute the difference abstractions of linear equation systems exactly. We also present a new heuristics based on minimal support consequences for overapproximating the set of difference abstractions. Our algorithms rely on elementary modes, first-order definitions, and finite domain constraint programming. We implemented our algorithms and applied them to change prediction in systems biology. It turns out experimentally that the new heuristics is often exact in practice, while outperforming the exact algorithm.Lire moins >
Lire la suite >Abstract interpretation was proposed for predicting changes of reaction networks with partial kinetic information in systems biology. This requires to compute the set of difference abstractions of a system of linear equations under nonlinear constraints. We present the first practical algorithm that can compute the difference abstractions of linear equation systems exactly. We also present a new heuristics based on minimal support consequences for overapproximating the set of difference abstractions. Our algorithms rely on elementary modes, first-order definitions, and finite domain constraint programming. We implemented our algorithms and applied them to change prediction in systems biology. It turns out experimentally that the new heuristics is often exact in practice, while outperforming the exact algorithm.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Commentaire :
This is an extension of a previous publication, see hal-02302463v1.
Collections :
Source :
Fichiers
- https://hal.archives-ouvertes.fr/hal-03156136v3/document
- Accès libre
- Accéder au document
- https://hal.archives-ouvertes.fr/hal-03156136v3/document
- Accès libre
- Accéder au document
- https://hal.archives-ouvertes.fr/hal-03156136v3/document
- Accès libre
- Accéder au document
- document
- Accès libre
- Accéder au document
- 1.pdf
- Accès libre
- Accéder au document