HIGhER: Improving instruction following ...
Type de document :
Communication dans un congrès avec actes
Titre :
HIGhER: Improving instruction following with Hindsight Generation for Experience Replay
Auteur(s) :
Cideron, Geoffrey [Auteur]
Ecole Normale Supérieure Paris-Saclay [ENS Paris Saclay]
Seurin, Mathieu [Auteur]
Scool [Scool]
Strub, Florian [Auteur]
DeepMind [Paris]
Pietquin, Olivier [Auteur]
Google Research [Paris]
Ecole Normale Supérieure Paris-Saclay [ENS Paris Saclay]
Seurin, Mathieu [Auteur]
Scool [Scool]
Strub, Florian [Auteur]
DeepMind [Paris]
Pietquin, Olivier [Auteur]
Google Research [Paris]
Titre de la manifestation scientifique :
ADPRL 2020 - IEEE SSCI Conference on Adaptive Dynamic Programming and Reinforcement Learning
Ville :
Camberra / Virtual
Pays :
Australie
Date de début de la manifestation scientifique :
2020-12-01
Mot(s)-clé(s) en anglais :
Natural Language Processing
Reinforcement Learning
Representation Learning
Reinforcement Learning
Representation Learning
Discipline(s) HAL :
Informatique [cs]/Intelligence artificielle [cs.AI]
Résumé en anglais : [en]
Language creates a compact representation of the world and allows the description of unlimited situations and objectives through compositionality. While these characterizations may foster instructing, conditioning or ...
Lire la suite >Language creates a compact representation of the world and allows the description of unlimited situations and objectives through compositionality. While these characterizations may foster instructing, conditioning or structuring interactive agent behavior, it remains an open-problem to correctly relate language understanding and reinforcement learning in even simple instruction following scenarios. This joint learning problem is alleviated through expert demonstrations, auxiliary losses, or neural inductive biases. In this paper, we propose an orthogonal approach called Hindsight Generation for Experience Replay (HIGhER) that extends the Hindsight Experience Replay approach to the language-conditioned policy setting. Whenever the agent does not fulfill its instruction, HIGhER learns to output a new directive that matches the agent trajectory, and it relabels the episode with a positive reward. To do so, HIGhER learns to map a state into an instruction by using past successful trajectories, which removes the need to have external expert interventions to relabel episodes as in vanilla HER. We show the efficiency of our approach in the BabyAI environment, and demonstrate how it complements other instruction following methods.Lire moins >
Lire la suite >Language creates a compact representation of the world and allows the description of unlimited situations and objectives through compositionality. While these characterizations may foster instructing, conditioning or structuring interactive agent behavior, it remains an open-problem to correctly relate language understanding and reinforcement learning in even simple instruction following scenarios. This joint learning problem is alleviated through expert demonstrations, auxiliary losses, or neural inductive biases. In this paper, we propose an orthogonal approach called Hindsight Generation for Experience Replay (HIGhER) that extends the Hindsight Experience Replay approach to the language-conditioned policy setting. Whenever the agent does not fulfill its instruction, HIGhER learns to output a new directive that matches the agent trajectory, and it relabels the episode with a positive reward. To do so, HIGhER learns to map a state into an instruction by using past successful trajectories, which removes the need to have external expert interventions to relabel episodes as in vanilla HER. We show the efficiency of our approach in the BabyAI environment, and demonstrate how it complements other instruction following methods.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Projet Européen :
Collections :
Source :
Fichiers
- https://hal.archives-ouvertes.fr/hal-03123981/document
- Accès libre
- Accéder au document
- https://hal.archives-ouvertes.fr/hal-03123981/document
- Accès libre
- Accéder au document
- https://hal.archives-ouvertes.fr/hal-03123981/document
- Accès libre
- Accéder au document
- document
- Accès libre
- Accéder au document
- HIGhER___ADPRL.pdf
- Accès libre
- Accéder au document
- document
- Accès libre
- Accéder au document
- HIGhER___ADPRL.pdf
- Accès libre
- Accéder au document