Event-driven ECG classification using an ...
Type de document :
Communication dans un congrès avec actes
Titre :
Event-driven ECG classification using an open-source, LC-ADC based non-uniformly sampled dataset
Auteur(s) :
Saeed, M. [Auteur]
University College Dublin [Dublin] [UCD]
Wang, Q. [Auteur]
University College Dublin [Dublin] [UCD]
Märtens, O. [Auteur]
Tallinn University of Technology [TalTech]
Larras, Benoit [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Microélectronique Silicium - IEMN [MICROELEC SI - IEMN]
Frappe, Antoine [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Microélectronique Silicium - IEMN [MICROELEC SI - IEMN]
Cardiff, B. [Auteur]
University College Dublin [Dublin] [UCD]
John, D. [Auteur]
University College Dublin [Dublin] [UCD]
University College Dublin [Dublin] [UCD]
Wang, Q. [Auteur]
University College Dublin [Dublin] [UCD]
Märtens, O. [Auteur]
Tallinn University of Technology [TalTech]
Larras, Benoit [Auteur]

Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Microélectronique Silicium - IEMN [MICROELEC SI - IEMN]
Frappe, Antoine [Auteur]

Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Microélectronique Silicium - IEMN [MICROELEC SI - IEMN]
Cardiff, B. [Auteur]
University College Dublin [Dublin] [UCD]
John, D. [Auteur]
University College Dublin [Dublin] [UCD]
Titre de la manifestation scientifique :
53rd IEEE International Symposium on Circuits and Systems, ISCAS 2021
Ville :
Daegu
Pays :
Corée du Sud
Date de début de la manifestation scientifique :
2021-05-22
Titre de l’ouvrage :
2021 IEEE International Symposium on Circuits and Systems (ISCAS)
Éditeur :
Institute of Electrical and Electronics Engineers Inc.
Date de publication :
2021
Mot(s)-clé(s) en anglais :
Artificial neural networks
Cardiac arrhythmia classification
Event-driven data
LC-ADC
Wearable sensors
Cardiac arrhythmia classification
Event-driven data
LC-ADC
Wearable sensors
Discipline(s) HAL :
Sciences de l'ingénieur [physics]
Résumé en anglais : [en]
In this article, non-uniformly sampled electrocardiogram (ECG) signals obtained from level-crossing analog-to-digital converters (LC-ADCs) are analyzed for event-driven classification and compression performance. The signal ...
Lire la suite >In this article, non-uniformly sampled electrocardiogram (ECG) signals obtained from level-crossing analog-to-digital converters (LC-ADCs) are analyzed for event-driven classification and compression performance. The signal compression results show that it is important to assess the distortion in event-driven signals when simulating LC-ADC models, especially at lower resolutions and larger quantization steps. The effects of varying the LC-ADC parameters for the application of cardiac arrhythmia classifiers are also assessed using an artificial neural network (ANN) and the MIT-BIH Arrhythmia Database. In comparison with uniformly-sampled data, it is possible to achieve comparable classification accuracy at a much lower complexity with event-driven ECG signals. The results show the best event-driven model achieves over 97% accuracy with 79% reduction in ANN complexity with signal-to-distortion ratio (S/D)≥21dB. For S/D<21dB, the best event-driven model achieves 93% accuracy with a 96% reduction in ANN complexity. An open-source event-driven arrhythmia database is also presented.Lire moins >
Lire la suite >In this article, non-uniformly sampled electrocardiogram (ECG) signals obtained from level-crossing analog-to-digital converters (LC-ADCs) are analyzed for event-driven classification and compression performance. The signal compression results show that it is important to assess the distortion in event-driven signals when simulating LC-ADC models, especially at lower resolutions and larger quantization steps. The effects of varying the LC-ADC parameters for the application of cardiac arrhythmia classifiers are also assessed using an artificial neural network (ANN) and the MIT-BIH Arrhythmia Database. In comparison with uniformly-sampled data, it is possible to achieve comparable classification accuracy at a much lower complexity with event-driven ECG signals. The results show the best event-driven model achieves over 97% accuracy with 79% reduction in ANN complexity with signal-to-distortion ratio (S/D)≥21dB. For S/D<21dB, the best event-driven model achieves 93% accuracy with a 96% reduction in ANN complexity. An open-source event-driven arrhythmia database is also presented.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Commentaire :
The open-source event-driven ECG dataset is available at https://github.com/jedaiproject/Open-Source-Event-Driven-ECG-Dataset
Source :
Fichiers
- https://hal.archives-ouvertes.fr/hal-03362265/document
- Accès libre
- Accéder au document
- https://hal.archives-ouvertes.fr/hal-03362265/document
- Accès libre
- Accéder au document
- document
- Accès libre
- Accéder au document
- ISCAS_2021_LCADC_ANN_with%20affiliation.pdf
- Accès libre
- Accéder au document
- document
- Accès libre
- Accéder au document
- ISCAS_2021_LCADC_ANN_with%20affiliation.pdf
- Accès libre
- Accéder au document