• English
    • français
  • Help
  •  | 
  • Contact
  •  | 
  • About
  •  | 
  • Login
  • HAL portal
  •  | 
  • Pages Pro
  • EN
  •  / 
  • FR
View Item 
  •   LillOA Home
  • Liste des unités
  • Institut d'Électronique, de Microélectronique et de Nanotechnologie (IEMN) - UMR 8520
  • View Item
  •   LillOA Home
  • Liste des unités
  • Institut d'Électronique, de Microélectronique et de Nanotechnologie (IEMN) - UMR 8520
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Event-driven ECG classification using an ...
  • BibTeX
  • CSV
  • Excel
  • RIS

Document type :
Communication dans un congrès avec actes
DOI :
10.1109/ISCAS51556.2021.9401333
Title :
Event-driven ECG classification using an open-source, LC-ADC based non-uniformly sampled dataset
Author(s) :
Saeed, M. []
University College Dublin [Dublin] [UCD]
Wang, Q. []
University College Dublin [Dublin] [UCD]
Märtens, O. [Auteur]
Tallinn University of Technology [TTÜ]
Larras, Benoit [Auteur]
Microélectronique Silicium - IEMN [MICROELEC SI - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Frappé, Antoine [Auteur]
Microélectronique Silicium - IEMN [MICROELEC SI - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Cardiff, B. [Auteur]
University College Dublin [Dublin] [UCD]
John, D. [Auteur]
University College Dublin [Dublin] [UCD]
Conference title :
53rd IEEE International Symposium on Circuits and Systems, ISCAS 2021
City :
Daegu
Country :
Corée du Sud
Start date of the conference :
2021-05-22
Book title :
2021 IEEE International Symposium on Circuits and Systems (ISCAS)
Publisher :
Institute of Electrical and Electronics Engineers Inc.
Publication date :
2021
English keyword(s) :
Artificial neural networks
Cardiac arrhythmia classification
Event-driven data
LC-ADC
Wearable sensors
HAL domain(s) :
Sciences de l'ingénieur [physics]
English abstract : [en]
In this article, non-uniformly sampled electrocardiogram (ECG) signals obtained from level-crossing analog-to-digital converters (LC-ADCs) are analyzed for event-driven classification and compression performance. The signal ...
Show more >
In this article, non-uniformly sampled electrocardiogram (ECG) signals obtained from level-crossing analog-to-digital converters (LC-ADCs) are analyzed for event-driven classification and compression performance. The signal compression results show that it is important to assess the distortion in event-driven signals when simulating LC-ADC models, especially at lower resolutions and larger quantization steps. The effects of varying the LC-ADC parameters for the application of cardiac arrhythmia classifiers are also assessed using an artificial neural network (ANN) and the MIT-BIH Arrhythmia Database. In comparison with uniformly-sampled data, it is possible to achieve comparable classification accuracy at a much lower complexity with event-driven ECG signals. The results show the best event-driven model achieves over 97% accuracy with 79% reduction in ANN complexity with signal-to-distortion ratio (S/D)≥21dB. For S/D<21dB, the best event-driven model achieves 93% accuracy with a 96% reduction in ANN complexity. An open-source event-driven arrhythmia database is also presented.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
ANR Project :
Event Driven Artificial Intelligence Hardware for Biomedical Sensors
Comment :
The open-source event-driven ECG dataset is available at https://github.com/jedaiproject/Open-Source-Event-Driven-ECG-Dataset
Collections :
  • Institut d'Électronique, de Microélectronique et de Nanotechnologie (IEMN) - UMR 8520
Source :
Harvested from HAL
Files
Thumbnail
  • https://hal.archives-ouvertes.fr/hal-03362265/document
  • Open access
  • Access the document
Thumbnail
  • https://hal.archives-ouvertes.fr/hal-03362265/document
  • Open access
  • Access the document
Université de Lille

Mentions légales
Université de Lille © 2017