Prediction optimization method for multi-fault ...
Type de document :
Autre communication scientifique (congrès sans actes - poster - séminaire...): Communication dans un congrès avec actes
Titre :
Prediction optimization method for multi-fault detection enhancement: application to GNSS positioning
Auteur(s) :
Mahmoud, Kaddour [Auteur]
Khoder, Makkawi [Auteur]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Nourdine, Aittmazirte [Auteur]
Maan, El Badaoui El Najjar [Auteur]
Nazih, Moubayed [Auteur]
Khoder, Makkawi [Auteur]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Nourdine, Aittmazirte [Auteur]
Maan, El Badaoui El Najjar [Auteur]
Nazih, Moubayed [Auteur]
Titre de la manifestation scientifique :
2018 IEEE International Conference on Vehicular Electronics and Safety (ICVES)
Ville :
Madrid
Pays :
Espagne
Date de début de la manifestation scientifique :
2018-09-12
Éditeur :
IEEE
Mot(s)-clé(s) en anglais :
GNSS
Prediction optimization
parametric model
RAIM
fault detection and exclusion
Prediction optimization
parametric model
RAIM
fault detection and exclusion
Discipline(s) HAL :
Informatique [cs]/Théorie de l'information [cs.IT]
Sciences de l'ingénieur [physics]/Automatique / Robotique
Informatique [cs]/Robotique [cs.RO]
Sciences de l'ingénieur [physics]/Automatique / Robotique
Informatique [cs]/Robotique [cs.RO]
Résumé en anglais : [en]
this paper presents an integrity monitoring method in order to provide a precise Global Navigation Satellite System (GNSS) positioning. The originality of the proposed method consists on robustly select the non-faulty ...
Lire la suite >this paper presents an integrity monitoring method in order to provide a precise Global Navigation Satellite System (GNSS) positioning. The originality of the proposed method consists on robustly select the non-faulty observations subset from GNSS observation by detecting and excluding erroneous measurements. A part of classical Fault Detection and Exclusion (FDE) literature is based on residual using prediction step of arecursive Bayesian filter like Kalman filter. The confidence granted to the prediction in such methods is critical in the phase of error detection. In GNSS standalone positioning, classical used prediction models are very approximate by inducing bad decisions, which increases the false alarm probability (PFA) and missed detection probability (PMD), leading a diminution in the integrity of GNSS positioning.In order to improve prediction step accuracy, in this paper, we propose a procedure of prediction optimization using a parametric model in the framework of a RAIM (Receiver Autonomous Integrity Monitoring) residual method used for erroneous measurements detection. Real GNSS data in experimental studies are used to test the proposed method. The results show that prediction optimization method improves RAIM residual sensitivity. In addition, the developed isolation step reduces considerably computational time.Lire moins >
Lire la suite >this paper presents an integrity monitoring method in order to provide a precise Global Navigation Satellite System (GNSS) positioning. The originality of the proposed method consists on robustly select the non-faulty observations subset from GNSS observation by detecting and excluding erroneous measurements. A part of classical Fault Detection and Exclusion (FDE) literature is based on residual using prediction step of arecursive Bayesian filter like Kalman filter. The confidence granted to the prediction in such methods is critical in the phase of error detection. In GNSS standalone positioning, classical used prediction models are very approximate by inducing bad decisions, which increases the false alarm probability (PFA) and missed detection probability (PMD), leading a diminution in the integrity of GNSS positioning.In order to improve prediction step accuracy, in this paper, we propose a procedure of prediction optimization using a parametric model in the framework of a RAIM (Receiver Autonomous Integrity Monitoring) residual method used for erroneous measurements detection. Real GNSS data in experimental studies are used to test the proposed method. The results show that prediction optimization method improves RAIM residual sensitivity. In addition, the developed isolation step reduces considerably computational time.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Collections :
Source :