Photocatalytic Performance of Perovskite ...
Type de document :
Compte-rendu et recension critique d'ouvrage
Titre :
Photocatalytic Performance of Perovskite and Metal–Organic Framework Hybrid Material for the Reduction of N2 to Ammonia
Auteur(s) :
Chamack, Masoumeh [Auteur]
Tarbiat Modares University [Tehran]
Ifires, Madjid [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Akbar Razavi, Sayed Ali [Auteur]
Tarbiat Modares University [Tehran]
Morsali, Ali [Auteur]
Tarbiat Modares University [Tehran]
Addad, Ahmed [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Larimi, Afsanehsadat [Auteur]
Szunerits, Sabine [Auteur]
NanoBioInterfaces - IEMN [NBI - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Boukherroub, Rabah [Auteur correspondant]
NanoBioInterfaces - IEMN [NBI - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Tarbiat Modares University [Tehran]
Ifires, Madjid [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Akbar Razavi, Sayed Ali [Auteur]
Tarbiat Modares University [Tehran]
Morsali, Ali [Auteur]
Tarbiat Modares University [Tehran]
Addad, Ahmed [Auteur]

Unité Matériaux et Transformations - UMR 8207 [UMET]
Larimi, Afsanehsadat [Auteur]
Szunerits, Sabine [Auteur]

NanoBioInterfaces - IEMN [NBI - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Boukherroub, Rabah [Auteur correspondant]

NanoBioInterfaces - IEMN [NBI - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Titre de la revue :
Inorganic Chemistry
Pagination :
1735-1744
Éditeur :
American Chemical Society
Date de publication :
2022-01-24
ISSN :
0020-1669
Mot(s)-clé(s) en anglais :
Nitrogen
Metal organic frameworks
X-ray photoelectron spectroscopy
Composites
Photocatalysts
Metal organic frameworks
X-ray photoelectron spectroscopy
Composites
Photocatalysts
Discipline(s) HAL :
Physique [physics]
Sciences de l'ingénieur [physics]
Sciences de l'ingénieur [physics]
Résumé en anglais : [en]
The orthorhombic phase of KNbO3 perovskite has been applied for nitrogen (N-2) photoreduction to ammonia (NH3). However, this material suffers from a low surface area and low ammonia production efficiency under UV light ...
Lire la suite >The orthorhombic phase of KNbO3 perovskite has been applied for nitrogen (N-2) photoreduction to ammonia (NH3). However, this material suffers from a low surface area and low ammonia production efficiency under UV light irradiation. To eliminate these barriers, we used a metal-organic framework (MOF), named as TMU-5 ([Zn(OBA)(BPDH)(0.5)](n).1.5DMF, where H(2)OBA = 4,4'-oxybis(benzoic acid) and BPDH = 2,5-bis(4-pyridyl)-3,4-diaza-2,4-hexadiene), for the synthesis of the KNbO3@TMU-5 hybrid material. KNbO3@TMU-5 achieved a NH3 production rate of 39.9 mu mol.L-1.h(-1).g(-1) upon UV light irradiation, as compared to 20.5 mu mol.L-1.h(-1).g(-1) recorded for KNbO3 under similar experimental conditions. Using different characterization techniques especially gas adsorption, cyclic voltammetry, X-ray photoelectron spectroscopy, photocurrent measurements, and Fourier transform infrared spectroscopy, it has been found that the higher photoactivity of KNbO3@TMU-5 in ammonia production is due to its higher surface area, higher electron-hole separation efficiency, and higher density of negative charges on Nb sites. This work shows that hybridization of conventional semiconductors (SCs) with photoactive MOFs can improve the photoactivity of the SC@MOF hybrid material in different reactions, especially kinetically complex reactions like photoconversion of nitrogen to ammonia.Lire moins >
Lire la suite >The orthorhombic phase of KNbO3 perovskite has been applied for nitrogen (N-2) photoreduction to ammonia (NH3). However, this material suffers from a low surface area and low ammonia production efficiency under UV light irradiation. To eliminate these barriers, we used a metal-organic framework (MOF), named as TMU-5 ([Zn(OBA)(BPDH)(0.5)](n).1.5DMF, where H(2)OBA = 4,4'-oxybis(benzoic acid) and BPDH = 2,5-bis(4-pyridyl)-3,4-diaza-2,4-hexadiene), for the synthesis of the KNbO3@TMU-5 hybrid material. KNbO3@TMU-5 achieved a NH3 production rate of 39.9 mu mol.L-1.h(-1).g(-1) upon UV light irradiation, as compared to 20.5 mu mol.L-1.h(-1).g(-1) recorded for KNbO3 under similar experimental conditions. Using different characterization techniques especially gas adsorption, cyclic voltammetry, X-ray photoelectron spectroscopy, photocurrent measurements, and Fourier transform infrared spectroscopy, it has been found that the higher photoactivity of KNbO3@TMU-5 in ammonia production is due to its higher surface area, higher electron-hole separation efficiency, and higher density of negative charges on Nb sites. This work shows that hybridization of conventional semiconductors (SCs) with photoactive MOFs can improve the photoactivity of the SC@MOF hybrid material in different reactions, especially kinetically complex reactions like photoconversion of nitrogen to ammonia.Lire moins >
Langue :
Anglais
Vulgarisation :
Non
Source :
Fichiers
- https://hal.archives-ouvertes.fr/hal-03549843/document
- Accès libre
- Accéder au document
- document
- Accès libre
- Accéder au document
- proof-Masoumeh%20Chamac_inorganic_RB.pdf
- Accès libre
- Accéder au document