[Review] Fundamentals, progress and ...
Type de document :
Compte-rendu et recension critique d'ouvrage
DOI :
Titre :
[Review] Fundamentals, progress and perspectives on high-frequency phononic crystals
Auteur(s) :
Cang, Yu [Auteur correspondant]
Max Planck Institute for Polymer Research
Tongji University
Jin, Yabin [Auteur]
Tongji University
Djafari-Rouhani, Bahram [Auteur]
Physique - IEMN [PHYSIQUE - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Fytas, George [Auteur]
Max Planck Institute for Polymer Research
Max Planck Institute for Polymer Research
Tongji University
Jin, Yabin [Auteur]
Tongji University
Djafari-Rouhani, Bahram [Auteur]

Physique - IEMN [PHYSIQUE - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Fytas, George [Auteur]
Max Planck Institute for Polymer Research
Titre de la revue :
Journal of Physics D: Applied Physics
Pagination :
193002
Éditeur :
IOP Publishing
Date de publication :
2022-05-12
ISSN :
0022-3727
Mot(s)-clé(s) en anglais :
phononic crystal
hypersonic
bandgaps
Brillouin light spectroscopy
pump-probe technique
hypersonic
bandgaps
Brillouin light spectroscopy
pump-probe technique
Discipline(s) HAL :
Sciences de l'ingénieur [physics]
Résumé en anglais : [en]
Phononic crystals (PnCs) are capable of manipulating the flow of elastic energy through their periodic structures and have emerged as a promising field in the last two decades. Thanks to the advances in microfabrication ...
Lire la suite >Phononic crystals (PnCs) are capable of manipulating the flow of elastic energy through their periodic structures and have emerged as a promising field in the last two decades. Thanks to the advances in microfabrication technologies and developments of multifunctional materials, the engineering of periodic structures moves forward to the nanometer scale. Hence, the relevant frequencies of elastic waves are pushed toward the gigahertz regime where strong photon-phonon interactions trigger the applications of PnCs towards information and communication technologies. In this review, we present the experimental achievements on hypersonic PnCs involving microfabrication technologies to realize the desired structures and characterization of their band structures for unraveling phonon propagation modulation. Some application-oriented research directions are proposed in terms of advances in fabrication and characterization technologies and the development of electro-optomechanical systems.Lire moins >
Lire la suite >Phononic crystals (PnCs) are capable of manipulating the flow of elastic energy through their periodic structures and have emerged as a promising field in the last two decades. Thanks to the advances in microfabrication technologies and developments of multifunctional materials, the engineering of periodic structures moves forward to the nanometer scale. Hence, the relevant frequencies of elastic waves are pushed toward the gigahertz regime where strong photon-phonon interactions trigger the applications of PnCs towards information and communication technologies. In this review, we present the experimental achievements on hypersonic PnCs involving microfabrication technologies to realize the desired structures and characterization of their band structures for unraveling phonon propagation modulation. Some application-oriented research directions are proposed in terms of advances in fabrication and characterization technologies and the development of electro-optomechanical systems.Lire moins >
Langue :
Anglais
Vulgarisation :
Non
Source :
Fichiers
- https://iopscience.iop.org/article/10.1088/1361-6463/ac4941/pdf
- Accès libre
- Accéder au document
- https://iopscience.iop.org/article/10.1088/1361-6463/ac4941/pdf
- Accès libre
- Accéder au document
- https://hal.archives-ouvertes.fr/hal-03565670/document
- Accès libre
- Accéder au document
- https://hal.archives-ouvertes.fr/hal-03565670/document
- Accès libre
- Accéder au document
- document
- Accès libre
- Accéder au document
- Yu%20Cang_2022_JPhysDApplPhys._55_193002.pdf
- Accès libre
- Accéder au document