Staistical features extraction in wavelet ...
Type de document :
Communication dans un congrès avec actes
Titre :
Staistical features extraction in wavelet domain for texture classification
Auteur(s) :
Zehani, Soraya [Auteur]
Ouahabi, Abdeldjalil [Auteur]
Imaging, Brain & Neuropsychiatry [iBraiN]
Mimi, Malika [Auteur]
Tahleb Ahmed, Abdelmalik [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
COMmunications NUMériques - IEMN [COMNUM - IEMN]
Ouahabi, Abdeldjalil [Auteur]
Imaging, Brain & Neuropsychiatry [iBraiN]
Mimi, Malika [Auteur]
Tahleb Ahmed, Abdelmalik [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
COMmunications NUMériques - IEMN [COMNUM - IEMN]
Titre de la manifestation scientifique :
6th International Conference on Image and Signal Processing and their Applications (ISPA 2019)
Ville :
Mostaganem
Pays :
Algérie
Date de début de la manifestation scientifique :
2019-11-24
Éditeur :
IEEE
Mot(s)-clé(s) en anglais :
feature extraction
fractals
image classification
image texture
neural nets
statistical analysis
wavelet transforms
fractals
image classification
image texture
neural nets
statistical analysis
wavelet transforms
Discipline(s) HAL :
Informatique [cs]
Informatique [cs]/Intelligence artificielle [cs.AI]
Informatique [cs]/Réseaux et télécommunications [cs.NI]
Sciences de l'ingénieur [physics]
Sciences de l'ingénieur [physics]/Traitement du signal et de l'image [eess.SP]
Sciences de l'ingénieur [physics]/Electronique
Informatique [cs]/Intelligence artificielle [cs.AI]
Informatique [cs]/Réseaux et télécommunications [cs.NI]
Sciences de l'ingénieur [physics]
Sciences de l'ingénieur [physics]/Traitement du signal et de l'image [eess.SP]
Sciences de l'ingénieur [physics]/Electronique
Résumé en anglais : [en]
This paper presents a new approach for texture classification generalizing a well-known statistical features combining the fractal analysis by means of fractal dimension (FD) with the selection first and second order ...
Lire la suite >This paper presents a new approach for texture classification generalizing a well-known statistical features combining the fractal analysis by means of fractal dimension (FD) with the selection first and second order statistics features in the spatial and wavelet domain. The objective of our paper is to propose the features extraction using statistical parameters in the spatial domain and in wavelet domain with different wavelets, with and without preprocessing stage for the texture classification using neural networks for pattern recognition and studying the effect of the preprocessing and wavelets in classification accuracy. The extracted features are used as the input of the ANN classifier. The performance of the proposed methods are evaluated by using two classes of Brodatz database textures. Finally, classification assessment measures such as the confusion matrix, ROC curves and accuracy are applied to the proposed methods.Lire moins >
Lire la suite >This paper presents a new approach for texture classification generalizing a well-known statistical features combining the fractal analysis by means of fractal dimension (FD) with the selection first and second order statistics features in the spatial and wavelet domain. The objective of our paper is to propose the features extraction using statistical parameters in the spatial domain and in wavelet domain with different wavelets, with and without preprocessing stage for the texture classification using neural networks for pattern recognition and studying the effect of the preprocessing and wavelets in classification accuracy. The extracted features are used as the input of the ANN classifier. The performance of the proposed methods are evaluated by using two classes of Brodatz database textures. Finally, classification assessment measures such as the confusion matrix, ROC curves and accuracy are applied to the proposed methods.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Commentaire :
ISBN 978-1-7281-3157-3 e-SIBN 978-1-7281-3156-6
Source :