On Biased Harmonic Signal Estimation: ...
Type de document :
Article dans une revue scientifique: Article original
Titre :
On Biased Harmonic Signal Estimation: Application to Electric Power Grid Monitoring
Auteur(s) :
Ahmed, Hafiz [Auteur]
Bangor University
Ushirobira, Rosane [Auteur]
Finite-time control and estimation for distributed systems [VALSE]
Efimov, Denis [Auteur]
National Research University of Information Technologies, Mechanics and Optics [St. Petersburg] [ITMO]
Finite-time control and estimation for distributed systems [VALSE]
Bangor University
Ushirobira, Rosane [Auteur]

Finite-time control and estimation for distributed systems [VALSE]
Efimov, Denis [Auteur]

National Research University of Information Technologies, Mechanics and Optics [St. Petersburg] [ITMO]
Finite-time control and estimation for distributed systems [VALSE]
Titre de la revue :
IEEE Transactions on Control Systems Technology
Éditeur :
Institute of Electrical and Electronics Engineers
Date de publication :
2022-02
ISSN :
1063-6536
Mot(s)-clé(s) en anglais :
DREM
fixed-time convergence
frequency estimation
fixed-time convergence
frequency estimation
Discipline(s) HAL :
Sciences de l'ingénieur [physics]/Automatique / Robotique
Résumé en anglais : [en]
Parametric estimation of a biased harmonic signal is a significant technical challenge for many engineering applications. Such a problem is particularly important for electric utility grid-connected power electronic ...
Lire la suite >Parametric estimation of a biased harmonic signal is a significant technical challenge for many engineering applications. Such a problem is particularly important for electric utility grid-connected power electronic converters. This paper utilizes a linear regression model of the signal to solve this interesting practical problem. A continuoustime dynamic regressor extension and mixing (DREM) based approach is then applied for parameter estimation. For practical implementation, continuous-time estimators are discretized using implicit and explicit Euler methods. We then prove that the implicit discretization can achieve fixed-time convergence for the unknown frequencies estimation. Thanks to the estimated frequencies, another DREM-based linear regression problem is solved for the parameter estimation purpose. The overall order of the proposed technique is the same as the number of unknown parameters, making the estimator suitable for real-time implementation in embedded devices. Theoretical results are validated through extensive comparative experimental studies.Lire moins >
Lire la suite >Parametric estimation of a biased harmonic signal is a significant technical challenge for many engineering applications. Such a problem is particularly important for electric utility grid-connected power electronic converters. This paper utilizes a linear regression model of the signal to solve this interesting practical problem. A continuoustime dynamic regressor extension and mixing (DREM) based approach is then applied for parameter estimation. For practical implementation, continuous-time estimators are discretized using implicit and explicit Euler methods. We then prove that the implicit discretization can achieve fixed-time convergence for the unknown frequencies estimation. Thanks to the estimated frequencies, another DREM-based linear regression problem is solved for the parameter estimation purpose. The overall order of the proposed technique is the same as the number of unknown parameters, making the estimator suitable for real-time implementation in embedded devices. Theoretical results are validated through extensive comparative experimental studies.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Collections :
Source :
Fichiers
- https://hal.inria.fr/hal-03585026/document
- Accès libre
- Accéder au document
- https://hal.inria.fr/hal-03585026/document
- Accès libre
- Accéder au document
- https://hal.inria.fr/hal-03585026/document
- Accès libre
- Accéder au document
- document
- Accès libre
- Accéder au document
- TCST_21_0051_Final.pdf
- Accès libre
- Accéder au document
- document
- Accès libre
- Accéder au document
- TCST_21_0051_Final.pdf
- Accès libre
- Accéder au document