Calibration method for soft robots modeled ...
Type de document :
Article dans une revue scientifique: Article original
DOI :
Titre :
Calibration method for soft robots modeled with FEM: application to anisotropy
Auteur(s) :
Vanneste, Félix [Auteur]
Deformable Robots Simulation Team [DEFROST ]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Goury, Olivier [Auteur]
Duriez, Christian [Auteur]
Deformable Robots Simulation Team [DEFROST ]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Goury, Olivier [Auteur]
Duriez, Christian [Auteur]
Titre de la revue :
IEEE Robotics and Automation Letters
Éditeur :
IEEE
Date de publication :
2022-03-03
ISSN :
2377-3766
Mot(s)-clé(s) en anglais :
Calibration and Identification
Optimization and Optimal Control
Modeling
Control and Learning for Soft Robots
Soft Robot Materials and Design
Optimization and Optimal Control
Modeling
Control and Learning for Soft Robots
Soft Robot Materials and Design
Discipline(s) HAL :
Informatique [cs]/Modélisation et simulation
Informatique [cs]/Robotique [cs.RO]
Informatique [cs]/Robotique [cs.RO]
Résumé en anglais : [en]
This paper aims at contributing to the sim2real challenge in soft robotics. We present a method for automatic finite element model calibration based on real data using quadratic programming optimisation. The method is ...
Lire la suite >This paper aims at contributing to the sim2real challenge in soft robotics. We present a method for automatic finite element model calibration based on real data using quadratic programming optimisation. The method is generic and evaluated in this study to fit mechanical parameters from anisotropic materials. We show that we are able to optimise the mechanical properties of a given structure along its shape to achieve a given configuration goal. We show the methods interest for calibration by taking reference points from a real world robot and use them in our optimisation process as goals the simulation has to match. Our process will minimise the errors introduced by manufacturing, imperfect models or even mechanical fatigue/plasticity.Lire moins >
Lire la suite >This paper aims at contributing to the sim2real challenge in soft robotics. We present a method for automatic finite element model calibration based on real data using quadratic programming optimisation. The method is generic and evaluated in this study to fit mechanical parameters from anisotropic materials. We show that we are able to optimise the mechanical properties of a given structure along its shape to achieve a given configuration goal. We show the methods interest for calibration by taking reference points from a real world robot and use them in our optimisation process as goals the simulation has to match. Our process will minimise the errors introduced by manufacturing, imperfect models or even mechanical fatigue/plasticity.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Collections :
Source :
Fichiers
- https://hal.inria.fr/hal-03620806/document
- Accès libre
- Accéder au document
- https://hal.inria.fr/hal-03620806/document
- Accès libre
- Accéder au document
- https://hal.inria.fr/hal-03620806/document
- Accès libre
- Accéder au document
- document
- Accès libre
- Accéder au document
- ROBOSOFT_2022_RAL.pdf
- Accès libre
- Accéder au document
- document
- Accès libre
- Accéder au document
- ROBOSOFT_2022_RAL.pdf
- Accès libre
- Accéder au document