• English
    • français
  • Help
  •  | 
  • Contact
  •  | 
  • About
  •  | 
  • Login
  • HAL portal
  •  | 
  • Pages Pro
  • EN
  •  / 
  • FR
View Item 
  •   LillOA Home
  • Liste des unités
  • Savoirs, Textes, Langage (STL) - UMR 8163
  • View Item
  •   LillOA Home
  • Liste des unités
  • Savoirs, Textes, Langage (STL) - UMR 8163
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Supervised learning for the detection of ...
  • BibTeX
  • CSV
  • Excel
  • RIS

Document type :
Article dans une revue scientifique: Article original
DOI :
10.1017/S1351324920000352
Title :
Supervised learning for the detection of negation and of its scope in French and Brazilian Portuguese biomedical corpora
Author(s) :
Dalloux, Clément [Auteur]
Creating and exploiting explicit links between multimedia fragments [LinkMedia]
Claveau, Vincent [Auteur]
Creating and exploiting explicit links between multimedia fragments [LinkMedia]
Grabar, Natalia [Auteur] refId
Savoirs, Textes, Langage (STL) - UMR 8163 [STL]
Oliveira, Lucas [Auteur]
Cabral Moro, Claudia [Auteur]
Gumiel, Yohan [Auteur]
Carvalho, Deborah [Auteur]
Journal title :
Natural Language Engineering
Publisher :
Cambridge University Press (CUP)
Publication date :
2020-06
ISSN :
1351-3249
English keyword(s) :
Corpus annotation
Machine learning
Natural language processing for biomedical texts
Information extraction
HAL domain(s) :
Informatique [cs]/Informatique et langage [cs.CL]
Informatique [cs]/Intelligence artificielle [cs.AI]
Informatique [cs]/Recherche d'information [cs.IR]
English abstract : [en]
Automatic detection of negated content is often a prerequisite in information extraction systems in various domains. In the biomedical domain especially, this task is important because negation plays an important role. In ...
Show more >
Automatic detection of negated content is often a prerequisite in information extraction systems in various domains. In the biomedical domain especially, this task is important because negation plays an important role. In this work, two main contributions are proposed. First, we work with languages which have been poorly addressed up to now: Brazilian Portuguese and French. Thus, we developed new corpora for these two languages which have been manually annotated for marking up the negation cues and their scope. Second, we propose automatic methods based on supervised machine learning approaches for the automatic detection of negation marks and of their scopes. The methods show to be robust in both languages (Brazilian Portuguese and French) and in cross-domain (general and biomedical languages) contexts. The approach is also validated on English data from the state of the art: it yields very good results and outperforms other existing approaches. Besides, the application is accessible and usable online. We assume that, through these issues (new annotated corpora, application accessible online, and cross-domain robustness), the reproducibility of the results and the robustness of the NLP applications will be augmented.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
ANR Project :
Digital Communication and Information Sciences for the Future Internet
Collections :
  • Savoirs, Textes, Langage (STL) - UMR 8163
Source :
Harvested from HAL
Files
Thumbnail
  • https://hal.archives-ouvertes.fr/hal-03021033/document
  • Open access
  • Access the document
Thumbnail
  • https://www.cambridge.org/core/services/aop-cambridge-core/content/view/5E5DB27872B07185DB58A1507DFA05D8/S1351324920000352a.pdf/div-class-title-supervised-learning-for-the-detection-of-negation-and-of-its-scope-in-french-and-brazilian-portuguese-biomedical-corpora-div.pdf
  • Open access
  • Access the document
Thumbnail
  • https://www.cambridge.org/core/services/aop-cambridge-core/content/view/5E5DB27872B07185DB58A1507DFA05D8/S1351324920000352a.pdf/div-class-title-supervised-learning-for-the-detection-of-negation-and-of-its-scope-in-french-and-brazilian-portuguese-biomedical-corpora-div.pdf
  • Open access
  • Access the document
Thumbnail
  • https://hal.archives-ouvertes.fr/hal-03021033/document
  • Open access
  • Access the document
Thumbnail
  • https://www.cambridge.org/core/services/aop-cambridge-core/content/view/5E5DB27872B07185DB58A1507DFA05D8/S1351324920000352a.pdf/div-class-title-supervised-learning-for-the-detection-of-negation-and-of-its-scope-in-french-and-brazilian-portuguese-biomedical-corpora-div.pdf
  • Open access
  • Access the document
Thumbnail
  • https://hal.archives-ouvertes.fr/hal-03021033/document
  • Open access
  • Access the document
Thumbnail
  • document
  • Open access
  • Access the document
Thumbnail
  • supervised_learning_for_the_detection_of_negation_and_of_its_scope_in_french_and_brazilian_portuguese_biomedical_corpora.pdf
  • Open access
  • Access the document
Thumbnail
  • div-class-title-supervised-learning-for-the-detection-of-negation-and-of-its-scope-in-french-and-brazilian-portuguese-biomedical-corpora-div.pdf
  • Open access
  • Access the document
Thumbnail
  • document
  • Open access
  • Access the document
Thumbnail
  • supervised_learning_for_the_detection_of_negation_and_of_its_scope_in_french_and_brazilian_portuguese_biomedical_corpora.pdf
  • Open access
  • Access the document
Université de Lille

Mentions légales
Accessibilité : non conforme
Université de Lille © 2017