Supervised learning for the detection of ...
Type de document :
Article dans une revue scientifique: Article original
Titre :
Supervised learning for the detection of negation and of its scope in French and Brazilian Portuguese biomedical corpora
Auteur(s) :
Dalloux, Clément [Auteur]
Creating and exploiting explicit links between multimedia fragments [LinkMedia]
Claveau, Vincent [Auteur]
Creating and exploiting explicit links between multimedia fragments [LinkMedia]
Grabar, Natalia [Auteur]
Savoirs, Textes, Langage (STL) - UMR 8163 [STL]
Oliveira, Lucas [Auteur]
Cabral Moro, Claudia [Auteur]
Gumiel, Yohan [Auteur]
Carvalho, Deborah [Auteur]
Creating and exploiting explicit links between multimedia fragments [LinkMedia]
Claveau, Vincent [Auteur]
Creating and exploiting explicit links between multimedia fragments [LinkMedia]
Grabar, Natalia [Auteur]

Savoirs, Textes, Langage (STL) - UMR 8163 [STL]
Oliveira, Lucas [Auteur]
Cabral Moro, Claudia [Auteur]
Gumiel, Yohan [Auteur]
Carvalho, Deborah [Auteur]
Titre de la revue :
Natural Language Engineering
Éditeur :
Cambridge University Press (CUP)
Date de publication :
2020-06
ISSN :
1351-3249
Mot(s)-clé(s) en anglais :
Corpus annotation
Machine learning
Natural language processing for biomedical texts
Information extraction
Machine learning
Natural language processing for biomedical texts
Information extraction
Discipline(s) HAL :
Informatique [cs]/Informatique et langage [cs.CL]
Informatique [cs]/Intelligence artificielle [cs.AI]
Informatique [cs]/Recherche d'information [cs.IR]
Informatique [cs]/Intelligence artificielle [cs.AI]
Informatique [cs]/Recherche d'information [cs.IR]
Résumé en anglais : [en]
Automatic detection of negated content is often a prerequisite in information extraction systems in various domains. In the biomedical domain especially, this task is important because negation plays an important role. In ...
Lire la suite >Automatic detection of negated content is often a prerequisite in information extraction systems in various domains. In the biomedical domain especially, this task is important because negation plays an important role. In this work, two main contributions are proposed. First, we work with languages which have been poorly addressed up to now: Brazilian Portuguese and French. Thus, we developed new corpora for these two languages which have been manually annotated for marking up the negation cues and their scope. Second, we propose automatic methods based on supervised machine learning approaches for the automatic detection of negation marks and of their scopes. The methods show to be robust in both languages (Brazilian Portuguese and French) and in cross-domain (general and biomedical languages) contexts. The approach is also validated on English data from the state of the art: it yields very good results and outperforms other existing approaches. Besides, the application is accessible and usable online. We assume that, through these issues (new annotated corpora, application accessible online, and cross-domain robustness), the reproducibility of the results and the robustness of the NLP applications will be augmented.Lire moins >
Lire la suite >Automatic detection of negated content is often a prerequisite in information extraction systems in various domains. In the biomedical domain especially, this task is important because negation plays an important role. In this work, two main contributions are proposed. First, we work with languages which have been poorly addressed up to now: Brazilian Portuguese and French. Thus, we developed new corpora for these two languages which have been manually annotated for marking up the negation cues and their scope. Second, we propose automatic methods based on supervised machine learning approaches for the automatic detection of negation marks and of their scopes. The methods show to be robust in both languages (Brazilian Portuguese and French) and in cross-domain (general and biomedical languages) contexts. The approach is also validated on English data from the state of the art: it yields very good results and outperforms other existing approaches. Besides, the application is accessible and usable online. We assume that, through these issues (new annotated corpora, application accessible online, and cross-domain robustness), the reproducibility of the results and the robustness of the NLP applications will be augmented.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Collections :
Source :
Fichiers
- https://hal.archives-ouvertes.fr/hal-03021033/document
- Accès libre
- Accéder au document
- https://www.cambridge.org/core/services/aop-cambridge-core/content/view/5E5DB27872B07185DB58A1507DFA05D8/S1351324920000352a.pdf/div-class-title-supervised-learning-for-the-detection-of-negation-and-of-its-scope-in-french-and-brazilian-portuguese-biomedical-corpora-div.pdf
- Accès libre
- Accéder au document
- https://www.cambridge.org/core/services/aop-cambridge-core/content/view/5E5DB27872B07185DB58A1507DFA05D8/S1351324920000352a.pdf/div-class-title-supervised-learning-for-the-detection-of-negation-and-of-its-scope-in-french-and-brazilian-portuguese-biomedical-corpora-div.pdf
- Accès libre
- Accéder au document
- https://hal.archives-ouvertes.fr/hal-03021033/document
- Accès libre
- Accéder au document
- https://www.cambridge.org/core/services/aop-cambridge-core/content/view/5E5DB27872B07185DB58A1507DFA05D8/S1351324920000352a.pdf/div-class-title-supervised-learning-for-the-detection-of-negation-and-of-its-scope-in-french-and-brazilian-portuguese-biomedical-corpora-div.pdf
- Accès libre
- Accéder au document
- https://hal.archives-ouvertes.fr/hal-03021033/document
- Accès libre
- Accéder au document
- document
- Accès libre
- Accéder au document
- supervised_learning_for_the_detection_of_negation_and_of_its_scope_in_french_and_brazilian_portuguese_biomedical_corpora.pdf
- Accès libre
- Accéder au document
- div-class-title-supervised-learning-for-the-detection-of-negation-and-of-its-scope-in-french-and-brazilian-portuguese-biomedical-corpora-div.pdf
- Accès libre
- Accéder au document
- document
- Accès libre
- Accéder au document
- supervised_learning_for_the_detection_of_negation_and_of_its_scope_in_french_and_brazilian_portuguese_biomedical_corpora.pdf
- Accès libre
- Accéder au document