Detection and analysis of medical misbehavior ...
Type de document :
Communication dans un congrès avec actes
Titre :
Detection and analysis of medical misbehavior in online forums
Auteur(s) :
Bigeard, Elise [Auteur]
Savoirs, Textes, Langage (STL) - UMR 8163 [STL]
Grabar, Natalia [Auteur]
Savoirs, Textes, Langage (STL) - UMR 8163 [STL]
Savoirs, Textes, Langage (STL) - UMR 8163 [STL]
Grabar, Natalia [Auteur]

Savoirs, Textes, Langage (STL) - UMR 8163 [STL]
Titre de la manifestation scientifique :
SNAMS 2019
Ville :
Granada
Pays :
Espagne
Date de début de la manifestation scientifique :
2019-10-22
Titre de l’ouvrage :
2019 Sixth International Conference on Social Networks Analysis, Management and Security (SNAMS)
Mot(s)-clé(s) en anglais :
Natural Language Processing
Text Mining
Social Media
Healthcare domain
Drug Non-Compliance
Text Mining
Social Media
Healthcare domain
Drug Non-Compliance
Discipline(s) HAL :
Sciences du Vivant [q-bio]
Informatique [cs]
Informatique [cs]
Résumé en anglais : [en]
Social media is an important source of information on behaviour and habits of users. It has been used as such in public health research to monitor adverse drug effects and drug misuse among others. We propose to study drug ...
Lire la suite >Social media is an important source of information on behaviour and habits of users. It has been used as such in public health research to monitor adverse drug effects and drug misuse among others. We propose to study drug non-compliance in health online forums. First, we use supervised classification to detect non-compliance messages and obtain 0.436 of F-measure. Then, we manually analyse the content of the messages to learn what kinds of behaviour can be detected, and to study the effect the social media can have on patient's compliance behaviour.Lire moins >
Lire la suite >Social media is an important source of information on behaviour and habits of users. It has been used as such in public health research to monitor adverse drug effects and drug misuse among others. We propose to study drug non-compliance in health online forums. First, we use supervised classification to detect non-compliance messages and obtain 0.436 of F-measure. Then, we manually analyse the content of the messages to learn what kinds of behaviour can be detected, and to study the effect the social media can have on patient's compliance behaviour.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Projet ANR :
Collections :
Source :
Fichiers
- https://hal.archives-ouvertes.fr/hal-02430533/document
- Accès libre
- Accéder au document
- https://hal.archives-ouvertes.fr/hal-02430533/document
- Accès libre
- Accéder au document
- document
- Accès libre
- Accéder au document
- bigeard-SNAMS2019.pdf
- Accès libre
- Accéder au document
- bigeard-SNAMS2019.pdf
- Accès libre
- Accéder au document