• English
    • français
  • Help
  •  | 
  • Contact
  •  | 
  • About
  •  | 
  • Login
  • HAL portal
  •  | 
  • Pages Pro
  • EN
  •  / 
  • FR
View Item 
  •   LillOA Home
  • Liste des unités
  • Laboratoire de Physique des Lasers, Atomes et Molécules (PhLAM) - UMR 8523
  • View Item
  •   LillOA Home
  • Liste des unités
  • Laboratoire de Physique des Lasers, Atomes et Molécules (PhLAM) - UMR 8523
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Adiabatic connection in spin-current density ...
  • BibTeX
  • CSV
  • Excel
  • RIS

Document type :
Article dans une revue scientifique
DOI :
10.1103/PhysRevB.102.235118
Title :
Adiabatic connection in spin-current density functional theory
Author(s) :
Desmarais, Jacques [Auteur correspondant]
Università degli studi di Torino = University of Turin [UNITO]
Institut des sciences analytiques et de physico-chimie pour l'environnement et les materiaux [IPREM]
Flament, Jean-Pierre [Auteur]
Laboratoire de Physique des Lasers, Atomes et Molécules - UMR 8523 [PhLAM]
Erba, Alessandro [Auteur correspondant]
Università degli studi di Torino = University of Turin [UNITO]
Journal title :
Physical Review B
Publisher :
American Physical Society
Publication date :
2020-12
ISSN :
2469-9950
English keyword(s) :
Current density
Density functional theory
Magnetic field effects
Magnetization
Matrix algebra
Quantum theory
Spin orbit coupling
HAL domain(s) :
Chimie/Matériaux
Chimie/Polymères
Chimie/Chimie théorique et/ou physique
Chimie/Chimie analytique
English abstract : [en]
The spin-current density functional theory (SCDFT), when formulated in a basis of Pauli spinors, provides a proper theoretical framework for the study of materials in an arbitrarily oriented external magnetic field and/or ...
Show more >
The spin-current density functional theory (SCDFT), when formulated in a basis of Pauli spinors, provides a proper theoretical framework for the study of materials in an arbitrarily oriented external magnetic field and/or upon inclusion of spin-dependent relativistic effects, such as spin-orbit coupling. The SCDFT is formulated in terms of the particle-number density n, the Cartesian components of the magnetization mx, my, and mz, the orbital-current density j, and the three spin-current densities Jx, Jy, and Jz, where each of these density variables depends on specific blocks of the density matrix. Exchange-correlation (xc) functionals within the SCDFT should therefore depend on all of these eight fundamental density variables: Fxc[n,mx,my,mz,j,Jx,Jy,Jz], which makes their parametrization a formidable task. Here, we formulate the adiabatic connection of the SCDFT for a treatment of exact Fock exchange in the theory. We show how the inclusion of a fraction of Fock exchange in standard functionals of the (spin) DFT (either in their collinear or noncollinear versions: Fxc[n], Fxc[n,mz] and Fxc[n,mx,my,mz]) allows for the two-electron potential to depend on all those blocks of the density matrix that correspond to the eight density variables of the SCDFT, in a sensible and yet practical way. In particular, in the local-density and generalized-gradient approximations of the SCDFT, the treatment of the current densities solely from the Fock exchange term is formally justified by the short-range behavior of the exchange hole. We discuss that the adiabatic coupling strength parameter modulates the two-electron coupling of the orbital- and spin-current densities with the particle-number density and magnetization. Formal considerations are complemented by numerical tests on a periodic model system in the presence of spin-orbit coupling and in the absence of an external magnetic field.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
Collections :
  • Laboratoire de Physique des Lasers, Atomes et Molécules (PhLAM) - UMR 8523
Source :
Harvested from HAL
Files
Thumbnail
  • https://iris.unito.it/bitstream/2318/1800743/2/Paper_accepted.pdf
  • Open access
  • Access the document
Thumbnail
  • https://iris.unito.it/bitstream/2318/1800743/2/Paper_accepted.pdf
  • Open access
  • Access the document
Thumbnail
  • https://iris.unito.it/bitstream/2318/1800743/2/Paper_accepted.pdf
  • Open access
  • Access the document
Thumbnail
  • https://iris.unito.it/bitstream/2318/1800743/2/Paper_accepted.pdf
  • Open access
  • Access the document
Thumbnail
  • Paper_accepted.pdf
  • Open access
  • Access the document
Université de Lille

Mentions légales
Université de Lille © 2017