Adiabatic connection in spin-current density ...
Type de document :
Compte-rendu et recension critique d'ouvrage
Titre :
Adiabatic connection in spin-current density functional theory
Auteur(s) :
Desmarais, Jacques [Auteur correspondant]
Università degli studi di Torino = University of Turin [UNITO]
Institut des sciences analytiques et de physico-chimie pour l'environnement et les materiaux [IPREM]
Flament, Jean-Pierre [Auteur]
Laboratoire de Physique des Lasers, Atomes et Molécules - UMR 8523 [PhLAM]
Erba, Alessandro [Auteur correspondant]
Università degli studi di Torino = University of Turin [UNITO]
Università degli studi di Torino = University of Turin [UNITO]
Institut des sciences analytiques et de physico-chimie pour l'environnement et les materiaux [IPREM]
Flament, Jean-Pierre [Auteur]
Laboratoire de Physique des Lasers, Atomes et Molécules - UMR 8523 [PhLAM]
Erba, Alessandro [Auteur correspondant]
Università degli studi di Torino = University of Turin [UNITO]
Titre de la revue :
Physical Review B
Éditeur :
American Physical Society
Date de publication :
2020-12
ISSN :
2469-9950
Mot(s)-clé(s) en anglais :
Current density
Density functional theory
Magnetic field effects
Magnetization
Matrix algebra
Quantum theory
Spin orbit coupling
Density functional theory
Magnetic field effects
Magnetization
Matrix algebra
Quantum theory
Spin orbit coupling
Discipline(s) HAL :
Chimie/Matériaux
Chimie/Polymères
Chimie/Chimie théorique et/ou physique
Chimie/Chimie analytique
Chimie/Polymères
Chimie/Chimie théorique et/ou physique
Chimie/Chimie analytique
Résumé en anglais : [en]
The spin-current density functional theory (SCDFT), when formulated in a basis of Pauli spinors, provides a proper theoretical framework for the study of materials in an arbitrarily oriented external magnetic field and/or ...
Lire la suite >The spin-current density functional theory (SCDFT), when formulated in a basis of Pauli spinors, provides a proper theoretical framework for the study of materials in an arbitrarily oriented external magnetic field and/or upon inclusion of spin-dependent relativistic effects, such as spin-orbit coupling. The SCDFT is formulated in terms of the particle-number density n, the Cartesian components of the magnetization mx, my, and mz, the orbital-current density j, and the three spin-current densities Jx, Jy, and Jz, where each of these density variables depends on specific blocks of the density matrix. Exchange-correlation (xc) functionals within the SCDFT should therefore depend on all of these eight fundamental density variables: Fxc[n,mx,my,mz,j,Jx,Jy,Jz], which makes their parametrization a formidable task. Here, we formulate the adiabatic connection of the SCDFT for a treatment of exact Fock exchange in the theory. We show how the inclusion of a fraction of Fock exchange in standard functionals of the (spin) DFT (either in their collinear or noncollinear versions: Fxc[n], Fxc[n,mz] and Fxc[n,mx,my,mz]) allows for the two-electron potential to depend on all those blocks of the density matrix that correspond to the eight density variables of the SCDFT, in a sensible and yet practical way. In particular, in the local-density and generalized-gradient approximations of the SCDFT, the treatment of the current densities solely from the Fock exchange term is formally justified by the short-range behavior of the exchange hole. We discuss that the adiabatic coupling strength parameter modulates the two-electron coupling of the orbital- and spin-current densities with the particle-number density and magnetization. Formal considerations are complemented by numerical tests on a periodic model system in the presence of spin-orbit coupling and in the absence of an external magnetic field.Lire moins >
Lire la suite >The spin-current density functional theory (SCDFT), when formulated in a basis of Pauli spinors, provides a proper theoretical framework for the study of materials in an arbitrarily oriented external magnetic field and/or upon inclusion of spin-dependent relativistic effects, such as spin-orbit coupling. The SCDFT is formulated in terms of the particle-number density n, the Cartesian components of the magnetization mx, my, and mz, the orbital-current density j, and the three spin-current densities Jx, Jy, and Jz, where each of these density variables depends on specific blocks of the density matrix. Exchange-correlation (xc) functionals within the SCDFT should therefore depend on all of these eight fundamental density variables: Fxc[n,mx,my,mz,j,Jx,Jy,Jz], which makes their parametrization a formidable task. Here, we formulate the adiabatic connection of the SCDFT for a treatment of exact Fock exchange in the theory. We show how the inclusion of a fraction of Fock exchange in standard functionals of the (spin) DFT (either in their collinear or noncollinear versions: Fxc[n], Fxc[n,mz] and Fxc[n,mx,my,mz]) allows for the two-electron potential to depend on all those blocks of the density matrix that correspond to the eight density variables of the SCDFT, in a sensible and yet practical way. In particular, in the local-density and generalized-gradient approximations of the SCDFT, the treatment of the current densities solely from the Fock exchange term is formally justified by the short-range behavior of the exchange hole. We discuss that the adiabatic coupling strength parameter modulates the two-electron coupling of the orbital- and spin-current densities with the particle-number density and magnetization. Formal considerations are complemented by numerical tests on a periodic model system in the presence of spin-orbit coupling and in the absence of an external magnetic field.Lire moins >
Langue :
Anglais
Vulgarisation :
Non
Source :
Fichiers
- https://iris.unito.it/bitstream/2318/1800743/2/Paper_accepted.pdf
- Accès libre
- Accéder au document
- https://iris.unito.it/bitstream/2318/1800743/2/Paper_accepted.pdf
- Accès libre
- Accéder au document
- https://iris.unito.it/bitstream/2318/1800743/2/Paper_accepted.pdf
- Accès libre
- Accéder au document
- https://iris.unito.it/bitstream/2318/1800743/2/Paper_accepted.pdf
- Accès libre
- Accéder au document
- Paper_accepted.pdf
- Accès libre
- Accéder au document