RGBD deep multi-scale network for background ...
Type de document :
Article dans une revue scientifique: Article original
Titre :
RGBD deep multi-scale network for background subtraction
Auteur(s) :
Houhou, Ihssane [Auteur]
Université Bourgogne Franche-Comté [COMUE] [UBFC]
Université de Technologie de Belfort-Montbeliard [UTBM]
University of Biskra Mohamed Khider
Zitouni, Athmane [Auteur]
University of Biskra Mohamed Khider
Ruichek, Yassine [Auteur]
Université Bourgogne Franche-Comté [COMUE] [UBFC]
Université de Technologie de Belfort-Montbeliard [UTBM]
Connaissance et Intelligence Artificielle Distribuées [Dijon] [CIAD]
Bekhouche, Salah Eddine [Auteur]
Université de Technologie de Belfort-Montbeliard [UTBM]
Université Bourgogne Franche-Comté [COMUE] [UBFC]
Kas, Mohamed [Auteur]
Université de Technologie de Belfort-Montbeliard [UTBM]
Connaissance et Intelligence Artificielle Distribuées [Dijon] [CIAD]
Tahleb Ahmed, Abdelmalik [Auteur]
COMmunications NUMériques - IEMN [COMNUM - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Université Bourgogne Franche-Comté [COMUE] [UBFC]
Université de Technologie de Belfort-Montbeliard [UTBM]
University of Biskra Mohamed Khider
Zitouni, Athmane [Auteur]
University of Biskra Mohamed Khider
Ruichek, Yassine [Auteur]
Université Bourgogne Franche-Comté [COMUE] [UBFC]
Université de Technologie de Belfort-Montbeliard [UTBM]
Connaissance et Intelligence Artificielle Distribuées [Dijon] [CIAD]
Bekhouche, Salah Eddine [Auteur]
Université de Technologie de Belfort-Montbeliard [UTBM]
Université Bourgogne Franche-Comté [COMUE] [UBFC]
Kas, Mohamed [Auteur]
Université de Technologie de Belfort-Montbeliard [UTBM]
Connaissance et Intelligence Artificielle Distribuées [Dijon] [CIAD]
Tahleb Ahmed, Abdelmalik [Auteur]
COMmunications NUMériques - IEMN [COMNUM - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Titre de la revue :
International Journal of Multimedia Information Retrieval
Pagination :
395–407
Éditeur :
Springer
Date de publication :
2022-09
ISSN :
2192-6611
Mot(s)-clé(s) en anglais :
Computer vision
Background subtraction
Deep learning
DMSN
RGBD
Unseen videos
Scene-independent evaluation
Background subtraction
Deep learning
DMSN
RGBD
Unseen videos
Scene-independent evaluation
Discipline(s) HAL :
Sciences de l'ingénieur [physics]
Résumé en anglais : [en]
This paper proposes a novel deep learning model called deep multi-scale network (DMSN) for background subtraction. This convolutional neural network is built to use RGB color channels and Depth maps as inputs with which ...
Lire la suite >This paper proposes a novel deep learning model called deep multi-scale network (DMSN) for background subtraction. This convolutional neural network is built to use RGB color channels and Depth maps as inputs with which it can fuse semantic and spatial information. In comparison with previous deep learning background subtraction techniques that lack information due to its use of only RGB channels, our RGBD version is able to overcome most of the drawbacks, especially in some particular kinds of challenges. Further, this paper introduces a new protocol for the SBM-RGBD dataset, concerning scene-independent evaluation, dedicated to Deep Learning methods to set up a competitive platform that includes more challenging situations. The proposed method proved its efficiency in solving the background subtraction in complex situations at different levels. The experimental results verify that the proposed work outperforms the state of the art on SBM-RGBD and GSM datasets.Lire moins >
Lire la suite >This paper proposes a novel deep learning model called deep multi-scale network (DMSN) for background subtraction. This convolutional neural network is built to use RGB color channels and Depth maps as inputs with which it can fuse semantic and spatial information. In comparison with previous deep learning background subtraction techniques that lack information due to its use of only RGB channels, our RGBD version is able to overcome most of the drawbacks, especially in some particular kinds of challenges. Further, this paper introduces a new protocol for the SBM-RGBD dataset, concerning scene-independent evaluation, dedicated to Deep Learning methods to set up a competitive platform that includes more challenging situations. The proposed method proved its efficiency in solving the background subtraction in complex situations at different levels. The experimental results verify that the proposed work outperforms the state of the art on SBM-RGBD and GSM datasets.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Source :