Thermal control of nucleation and propagation ...
Type de document :
Compte-rendu et recension critique d'ouvrage
Titre :
Thermal control of nucleation and propagation transition stresses in discrete lattices with non-local interactions and non-convex energy
Auteur(s) :
Cannizzo, Andrea [Auteur]
Acoustique Impulsionnelle & Magnéto-Acoustique Non linéaire - Fluides, Interfaces Liquides & Micro-Systèmes - IEMN [AIMAN-FILMS - IEMN]
Polytechnic University of Bari / Politecnico di Bari
Bellino, Luca [Auteur]
Polytechnic University of Bari / Politecnico di Bari
Florio, Giuseppe [Auteur]
Istituto Nazionale di Fisica Nucleare, sezione di Bari [INFN, sezione di Bari]
Polytechnic University of Bari / Politecnico di Bari
Puglisi, Giuseppe [Auteur]
Polytechnic University of Bari / Politecnico di Bari
Giordano, Stefano [Auteur]
Acoustique Impulsionnelle & Magnéto-Acoustique Non linéaire - Fluides, Interfaces Liquides & Micro-Systèmes - IEMN [AIMAN-FILMS - IEMN]
Acoustique Impulsionnelle & Magnéto-Acoustique Non linéaire - Fluides, Interfaces Liquides & Micro-Systèmes - IEMN [AIMAN-FILMS - IEMN]
Polytechnic University of Bari / Politecnico di Bari
Bellino, Luca [Auteur]
Polytechnic University of Bari / Politecnico di Bari
Florio, Giuseppe [Auteur]
Istituto Nazionale di Fisica Nucleare, sezione di Bari [INFN, sezione di Bari]
Polytechnic University of Bari / Politecnico di Bari
Puglisi, Giuseppe [Auteur]
Polytechnic University of Bari / Politecnico di Bari
Giordano, Stefano [Auteur]

Acoustique Impulsionnelle & Magnéto-Acoustique Non linéaire - Fluides, Interfaces Liquides & Micro-Systèmes - IEMN [AIMAN-FILMS - IEMN]
Titre de la revue :
The European Physical Journal Plus
Pagination :
569
Éditeur :
Springer
Date de publication :
2022
ISSN :
2190-5444
Mot(s)-clé(s) en anglais :
configurational transitions
phase transformations
statistical mechanics of bistable systems
nanowires
phase transformations
statistical mechanics of bistable systems
nanowires
Discipline(s) HAL :
Physique [physics]/Matière Condensée [cond-mat]
Physique [physics]/Physique [physics]/Biophysique [physics.bio-ph]
Physique [physics]/Physique [physics]/Biophysique [physics.bio-ph]
Résumé en anglais : [en]
Non-local and non-convex energies represent fundamental interacting effects regulating the complex behavior of many systems in biophysics and materials science. We study one-dimensional, prototypical schemes able to represent ...
Lire la suite >Non-local and non-convex energies represent fundamental interacting effects regulating the complex behavior of many systems in biophysics and materials science. We study one-dimensional, prototypical schemes able to represent the behavior of several biomacromolecules and the phase transformation phenomena in solid mechanics. To elucidate the effects of thermal fluctuations on the non-convex non-local behavior of such systems, we consider three models of different complexity relying on thermodynamics and statistical mechanics: (i) an Ising-type scheme with an arbitrary temperature-dependent number of interfaces between different domains, (ii) a zipper model with a single interface between two evolving domains, and (iii) an approximation based on the stationary phase method. In all three cases, we study the system under both isometric condition (prescribed extension, matching with the Helmholtz ensemble of the statistical mechanics) and isotensional condition (applied force, matching with the Gibbs ensemble). Interestingly, in the Helmholtz ensemble the analysis shows the possibility of interpreting the experimentally observed thermal effects with the theoretical force–extension relation characterized by a temperature-dependent force plateau (Maxwell stress) and a force peak (nucleation stress). We obtain explicit relations for the configurational properties of the system as well (expected values of the phase fractions and number of interfaces). Moreover, we are able to prove the equivalence of the two thermodynamic ensembles in the thermodynamic limit. We finally discuss the comparison with data from the literature showing the efficiency of the proposed model in describing known experimental effects.Lire moins >
Lire la suite >Non-local and non-convex energies represent fundamental interacting effects regulating the complex behavior of many systems in biophysics and materials science. We study one-dimensional, prototypical schemes able to represent the behavior of several biomacromolecules and the phase transformation phenomena in solid mechanics. To elucidate the effects of thermal fluctuations on the non-convex non-local behavior of such systems, we consider three models of different complexity relying on thermodynamics and statistical mechanics: (i) an Ising-type scheme with an arbitrary temperature-dependent number of interfaces between different domains, (ii) a zipper model with a single interface between two evolving domains, and (iii) an approximation based on the stationary phase method. In all three cases, we study the system under both isometric condition (prescribed extension, matching with the Helmholtz ensemble of the statistical mechanics) and isotensional condition (applied force, matching with the Gibbs ensemble). Interestingly, in the Helmholtz ensemble the analysis shows the possibility of interpreting the experimentally observed thermal effects with the theoretical force–extension relation characterized by a temperature-dependent force plateau (Maxwell stress) and a force peak (nucleation stress). We obtain explicit relations for the configurational properties of the system as well (expected values of the phase fractions and number of interfaces). Moreover, we are able to prove the equivalence of the two thermodynamic ensembles in the thermodynamic limit. We finally discuss the comparison with data from the literature showing the efficiency of the proposed model in describing known experimental effects.Lire moins >
Langue :
Anglais
Vulgarisation :
Non
Source :
Fichiers
- http://arxiv.org/pdf/2202.10743
- Accès libre
- Accéder au document
- https://hal.archives-ouvertes.fr/hal-03673427/document
- Accès libre
- Accéder au document
- https://hal.archives-ouvertes.fr/hal-03673427/document
- Accès libre
- Accéder au document
- document
- Accès libre
- Accéder au document
- 2202.10743.pdf
- Accès libre
- Accéder au document
- 2202.10743
- Accès libre
- Accéder au document