Averaging method for the stability analysis ...
Type de document :
Compte-rendu et recension critique d'ouvrage
Titre :
Averaging method for the stability analysis of strongly nonlinear mechanical systems
Auteur(s) :
Aleksandrov, Alexander [Auteur]
St Petersburg State University [SPbU]
Efimov, Denis [Auteur]
Finite-time control and estimation for distributed systems [VALSE]
ITMO University [Russia]
St Petersburg State University [SPbU]
Efimov, Denis [Auteur]
Finite-time control and estimation for distributed systems [VALSE]
ITMO University [Russia]
Titre de la revue :
Automatica
Éditeur :
Elsevier
Date de publication :
2022
ISSN :
0005-1098
Mot(s)-clé(s) en anglais :
nonlinear mechanical system
nonstationary perturbations
averaging
asymptotic stability
Lyapunov function
nonstationary perturbations
averaging
asymptotic stability
Lyapunov function
Discipline(s) HAL :
Sciences de l'ingénieur [physics]/Automatique / Robotique
Résumé en anglais : [en]
A mechanical system under strongly nonlinear potential and dissipative forces, with nonlinear nonstationary perturbations having zero mean values, is studied. Proposing a special construction of Lyapunov function, the ...
Lire la suite >A mechanical system under strongly nonlinear potential and dissipative forces, with nonlinear nonstationary perturbations having zero mean values, is studied. Proposing a special construction of Lyapunov function, the conditions are found, under which the perturbations do not influence the asymptotic stability of the trivial equilibrium position of the system. These conditions include the requirements on asymptotic stability of the disturbance-free system and the relations of the nonlinearity orders between potential and dissipative forces. The developed approach is extended to the problem of monoaxial stabilization of a rigid body.Lire moins >
Lire la suite >A mechanical system under strongly nonlinear potential and dissipative forces, with nonlinear nonstationary perturbations having zero mean values, is studied. Proposing a special construction of Lyapunov function, the conditions are found, under which the perturbations do not influence the asymptotic stability of the trivial equilibrium position of the system. These conditions include the requirements on asymptotic stability of the disturbance-free system and the relations of the nonlinearity orders between potential and dissipative forces. The developed approach is extended to the problem of monoaxial stabilization of a rigid body.Lire moins >
Langue :
Anglais
Vulgarisation :
Non
Collections :
Source :
Fichiers
- https://hal.inria.fr/hal-03679643/document
- Accès libre
- Accéder au document
- https://hal.inria.fr/hal-03679643/document
- Accès libre
- Accéder au document
- https://hal.inria.fr/hal-03679643/document
- Accès libre
- Accéder au document
- document
- Accès libre
- Accéder au document
- Mech_aver.pdf
- Accès libre
- Accéder au document