Cumulative learning enables convolutional ...
Type de document :
Article dans une revue scientifique: Article original
PMID :
URL permanente :
Titre :
Cumulative learning enables convolutional neural network representations for small mass spectrometry data classification
Auteur(s) :
Seddiki, Khawla [Auteur]
Protéomique, Réponse Inflammatoire, Spectrométrie de Masse (PRISM) - U1192
CHU de Québec–Université Laval
Saudemont, Philippe [Auteur]
Protéomique, Réponse Inflammatoire, Spectrométrie de Masse (PRISM) - U1192
Precioso, Frederic [Auteur]
Ogrinc, Nina [Auteur]
Protéomique, Réponse Inflammatoire, Spectrométrie de Masse (PRISM) - U1192
Wisztorski, Maxence [Auteur]
Protéomique, Réponse Inflammatoire, Spectrométrie de Masse (PRISM) - U1192
Salzet, Michel [Auteur]
Protéomique, Réponse Inflammatoire, Spectrométrie de Masse (PRISM) - U1192
FOURNIER, Isabelle [Auteur]
Protéomique, Réponse Inflammatoire, Spectrométrie de Masse (PRISM) - U1192
Droit, Arnaud [Auteur]
Protéomique, Réponse Inflammatoire, Spectrométrie de Masse (PRISM) - U1192
CHU de Québec–Université Laval
Saudemont, Philippe [Auteur]
Protéomique, Réponse Inflammatoire, Spectrométrie de Masse (PRISM) - U1192
Precioso, Frederic [Auteur]
Ogrinc, Nina [Auteur]
Protéomique, Réponse Inflammatoire, Spectrométrie de Masse (PRISM) - U1192
Wisztorski, Maxence [Auteur]

Protéomique, Réponse Inflammatoire, Spectrométrie de Masse (PRISM) - U1192
Salzet, Michel [Auteur]

Protéomique, Réponse Inflammatoire, Spectrométrie de Masse (PRISM) - U1192
FOURNIER, Isabelle [Auteur]

Protéomique, Réponse Inflammatoire, Spectrométrie de Masse (PRISM) - U1192
Droit, Arnaud [Auteur]
Titre de la revue :
Nature Communications
Nom court de la revue :
Nat Commun
Numéro :
11
Pagination :
5595
Éditeur :
Springer Nature
Date de publication :
2020-11-05
ISSN :
2041-1723
Discipline(s) HAL :
Sciences du Vivant [q-bio]
Informatique [cs]
Informatique [cs]
Résumé en anglais : [en]
Rapid and accurate clinical diagnosis remains challenging. A component of diagnosis tool development is the design of effective classification models with Mass spectrometry (MS) data. Some Machine Learning approaches have ...
Lire la suite >Rapid and accurate clinical diagnosis remains challenging. A component of diagnosis tool development is the design of effective classification models with Mass spectrometry (MS) data. Some Machine Learning approaches have been investigated but these models require time-consuming preprocessing steps to remove artifacts, making them unsuitable for rapid analysis. Convolutional Neural Networks (CNNs) have been found to perform well under such circumstances since they can learn representations from raw data. However, their effectiveness decreases when the number of available training samples is small, which is a common situation in medicine. In this work, we investigate transfer learning on 1D-CNNs, then we develop a cumulative learning method when transfer learning is not powerful enough. We propose to train the same model through several classification tasks over various small datasets to accumulate knowledge in the resulting representation. By using rat brain as the initial training dataset, a cumulative learning approach can have a classification accuracy exceeding 98% for 1D clinical MS-data. We show the use of cumulative learning using datasets generated in different biological contexts, on different organisms, and acquired by different instruments. Here we show a promising strategy for improving MS data classification accuracy when only small numbers of samples are available.Lire moins >
Lire la suite >Rapid and accurate clinical diagnosis remains challenging. A component of diagnosis tool development is the design of effective classification models with Mass spectrometry (MS) data. Some Machine Learning approaches have been investigated but these models require time-consuming preprocessing steps to remove artifacts, making them unsuitable for rapid analysis. Convolutional Neural Networks (CNNs) have been found to perform well under such circumstances since they can learn representations from raw data. However, their effectiveness decreases when the number of available training samples is small, which is a common situation in medicine. In this work, we investigate transfer learning on 1D-CNNs, then we develop a cumulative learning method when transfer learning is not powerful enough. We propose to train the same model through several classification tasks over various small datasets to accumulate knowledge in the resulting representation. By using rat brain as the initial training dataset, a cumulative learning approach can have a classification accuracy exceeding 98% for 1D clinical MS-data. We show the use of cumulative learning using datasets generated in different biological contexts, on different organisms, and acquired by different instruments. Here we show a promising strategy for improving MS data classification accuracy when only small numbers of samples are available.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Établissement(s) :
INSERM
Université de Lille
Université de Lille
Date de dépôt :
2022-06-15T13:58:02Z
2023-03-07T13:44:34Z
2023-03-07T13:44:34Z
Fichiers
- 2020-11-05-s41467-020-19354-z.pdf
- Version éditeur
- Accès libre
- Accéder au document