Modeling and control of conducting polymer ...
Type de document :
Article dans une revue scientifique: Article original
Titre :
Modeling and control of conducting polymer actuator
Auteur(s) :
Xun, Lingxiao [Auteur]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Deformable Robots Simulation Team [DEFROST ]
Inria Lille - Nord Europe
Zheng, Gang [Auteur]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Deformable Robots Simulation Team [DEFROST ]
Ghenna, Sofiane [Auteur]
Matériaux et Acoustiques pour MIcro et NAno systèmes intégrés - IEMN [MAMINA - IEMN]
Kruszewski, Alexandre [Auteur]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Deformable Robots Simulation Team [DEFROST ]
Cattan, Eric [Auteur]
Matériaux et Acoustiques pour MIcro et NAno systèmes intégrés - IEMN [MAMINA - IEMN]
Duriez, Christian [Auteur]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Deformable Robots Simulation Team [DEFROST ]
Grondel, Sebastien [Auteur]
Matériaux et Acoustiques pour MIcro et NAno systèmes intégrés - IEMN [MAMINA - IEMN]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Deformable Robots Simulation Team [DEFROST ]
Inria Lille - Nord Europe
Zheng, Gang [Auteur]

Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Deformable Robots Simulation Team [DEFROST ]
Ghenna, Sofiane [Auteur]

Matériaux et Acoustiques pour MIcro et NAno systèmes intégrés - IEMN [MAMINA - IEMN]
Kruszewski, Alexandre [Auteur]

Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Deformable Robots Simulation Team [DEFROST ]
Cattan, Eric [Auteur]

Matériaux et Acoustiques pour MIcro et NAno systèmes intégrés - IEMN [MAMINA - IEMN]
Duriez, Christian [Auteur]

Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Deformable Robots Simulation Team [DEFROST ]
Grondel, Sebastien [Auteur]

Matériaux et Acoustiques pour MIcro et NAno systèmes intégrés - IEMN [MAMINA - IEMN]
Titre de la revue :
IEEE/ASME Transactions on Mechatronics
Éditeur :
Institute of Electrical and Electronics Engineers
Date de publication :
2023-02
ISSN :
1083-4435
Mot(s)-clé(s) en anglais :
Conducting polymer actuator
IEAP
parameter identification
optimal control.
IEAP
parameter identification
optimal control.
Discipline(s) HAL :
Sciences de l'ingénieur [physics]/Automatique / Robotique
Résumé en anglais : [en]
Conducting polymer (CP) actuator has nonlinear dynamic characteristics during its charge process. In this study, we proposed an electromechanic model and an optimal controller for a type of ionic electroactive polymer ...
Lire la suite >Conducting polymer (CP) actuator has nonlinear dynamic characteristics during its charge process. In this study, we proposed an electromechanic model and an optimal controller for a type of ionic electroactive polymer (IEPA) actuator with submillimeter scale, which can produce large deformation under low actuation voltage. The electronic model is to describe the evolution of charge state in time domain. The mechanic model is to calculate the deformation of CP actuator under the actuation force and external force. Based on the electromechanic coupling model, a parameter identification method is proposed to estimate the nonlinear parameter of CP actuator. The experiments show that our electromechanic model successfully predicts the deformation of actuator under different input voltages with the identified parameters. In the last step, an optimal controller is designed to control the orientation of IEAP actuator, which achieves at a high control performance in our experiments. The success of the modeling and control lays the foundation work for the subsequent biomedical applications.Lire moins >
Lire la suite >Conducting polymer (CP) actuator has nonlinear dynamic characteristics during its charge process. In this study, we proposed an electromechanic model and an optimal controller for a type of ionic electroactive polymer (IEPA) actuator with submillimeter scale, which can produce large deformation under low actuation voltage. The electronic model is to describe the evolution of charge state in time domain. The mechanic model is to calculate the deformation of CP actuator under the actuation force and external force. Based on the electromechanic coupling model, a parameter identification method is proposed to estimate the nonlinear parameter of CP actuator. The experiments show that our electromechanic model successfully predicts the deformation of actuator under different input voltages with the identified parameters. In the last step, an optimal controller is designed to control the orientation of IEAP actuator, which achieves at a high control performance in our experiments. The success of the modeling and control lays the foundation work for the subsequent biomedical applications.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Projet ANR :
Source :
Fichiers
- document
- Accès libre
- Accéder au document
- XUN_TransMeca.pdf
- Accès libre
- Accéder au document
- document
- Accès libre
- Accéder au document
- XUN_TransMeca.pdf
- Accès libre
- Accéder au document