Major Improvement in the Cycling Ability ...
Document type :
Article dans une revue scientifique: Article original
DOI :
Permalink :
Title :
Major Improvement in the Cycling Ability of Pseudocapacitive Vanadium Nitride Films for Micro-Supercapacitor
Author(s) :
Jrondi, Aiman [Auteur]
Unité de Catalyse et Chimie du Solide (UCCS) - UMR 8181
Buvat, Gaetan [Auteur]
Unité de Catalyse et Chimie du Solide (UCCS) - UMR 8181
De La Pena, Francisco [Auteur]
Marinova, Maya [Auteur]
Institut Chevreul - FR2638
Huvé, Marielle [Auteur]
Unité de Catalyse et Chimie du Solide (UCCS) - UMR 8181
Brousse, Thierry [Auteur]
Institut des Matériaux Jean Rouxel [IMN]
Roussel, Pascal [Auteur]
Unité de Catalyse et Chimie du Solide (UCCS) - UMR 8181
Lethien, Christophe [Auteur]
Institut d'Électronique, de Microélectronique et de Nanotechnologie (IEMN) - UMR 8520
Unité de Catalyse et Chimie du Solide (UCCS) - UMR 8181
Buvat, Gaetan [Auteur]

Unité de Catalyse et Chimie du Solide (UCCS) - UMR 8181
De La Pena, Francisco [Auteur]
Marinova, Maya [Auteur]

Institut Chevreul - FR2638
Huvé, Marielle [Auteur]

Unité de Catalyse et Chimie du Solide (UCCS) - UMR 8181
Brousse, Thierry [Auteur]
Institut des Matériaux Jean Rouxel [IMN]
Roussel, Pascal [Auteur]

Unité de Catalyse et Chimie du Solide (UCCS) - UMR 8181
Lethien, Christophe [Auteur]

Institut d'Électronique, de Microélectronique et de Nanotechnologie (IEMN) - UMR 8520
Journal title :
Advanced Energy Materials
Abbreviated title :
Adv. Energy Mater.
Publication date :
2023-02-28
ISSN :
1614-6832
Keyword(s) :
ageing
cycling stability
high rate
pseudocapacitance
sputtering
vanadium nitride
cycling stability
high rate
pseudocapacitance
sputtering
vanadium nitride
HAL domain(s) :
Chimie/Chimie inorganique
English abstract : [en]
Vanadium nitride film made using a thin film deposition technique is a promising electrode material for micro-supercapacitor applications owing to its high electrical conductivity and high volumetric and surface capacitance ...
Show more >Vanadium nitride film made using a thin film deposition technique is a promising electrode material for micro-supercapacitor applications owing to its high electrical conductivity and high volumetric and surface capacitance values in aqueous electrolyte. Nevertheless, the cycling stability has to be improved to deliver good capacitance during a large number of cycles. Here, it is shown that vanadium nitride films made by a magnetron sputtering deposition method exhibit remarkable cycling stability (high capacitance retention value after 150 000 cycles), ultra-high rate capability (75% of the initial capacitance at 1.6 V s−1), while providing high surface capacitance values (≈1.4 F cm−2) and very low ageing of the VN electrodes (no loss of performance after 13 months). Additionally, new findings regarding the location of vanadium oxides species responsible for the charge storage mechanism in pseudocapacitive VN films are revealed by transmission electron microscopy electron energy-loss spectroscopy analyses at the nanoscale.Show less >
Show more >Vanadium nitride film made using a thin film deposition technique is a promising electrode material for micro-supercapacitor applications owing to its high electrical conductivity and high volumetric and surface capacitance values in aqueous electrolyte. Nevertheless, the cycling stability has to be improved to deliver good capacitance during a large number of cycles. Here, it is shown that vanadium nitride films made by a magnetron sputtering deposition method exhibit remarkable cycling stability (high capacitance retention value after 150 000 cycles), ultra-high rate capability (75% of the initial capacitance at 1.6 V s−1), while providing high surface capacitance values (≈1.4 F cm−2) and very low ageing of the VN electrodes (no loss of performance after 13 months). Additionally, new findings regarding the location of vanadium oxides species responsible for the charge storage mechanism in pseudocapacitive VN films are revealed by transmission electron microscopy electron energy-loss spectroscopy analyses at the nanoscale.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
Administrative institution(s) :
Université de Lille
CNRS
Centrale Lille
ENSCL
Univ. Artois
CNRS
Centrale Lille
ENSCL
Univ. Artois
Collections :
Research team(s) :
Matériaux inorganiques, structures, systèmes et propriétés (MISSP)
Submission date :
2023-03-15T01:15:40Z
2023-03-23T10:08:43Z
2023-03-23T10:08:43Z