Advances on Microsupercapacitors: Real ...
Document type :
Article dans une revue scientifique: Article de synthèse/Review paper
DOI :
PMID :
Permalink :
Title :
Advances on Microsupercapacitors: Real Fast Miniaturized Devices toward Technological Dreams for Powering Embedded Electronics?
Author(s) :
Dinh, Khac-Huy [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Roussel, Pascal [Auteur]
Unité de Catalyse et Chimie du Solide (UCCS) - UMR 8181
Lethien, Christophe [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Roussel, Pascal [Auteur]

Unité de Catalyse et Chimie du Solide (UCCS) - UMR 8181
Lethien, Christophe [Auteur]

Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Journal title :
Acs Omega
Volume number :
8
Pages :
8977-8990
Publication date :
2023-03-22
ISSN :
2470-1343
HAL domain(s) :
Chimie/Chimie inorganique
English abstract : [en]
Microsupercapacitors (MSCs) have emerged as the next generation of electrochemical energy storage sources for powering miniaturized embedded electronic and Internet of Things devices. Despite many advantages such as ...
Show more >Microsupercapacitors (MSCs) have emerged as the next generation of electrochemical energy storage sources for powering miniaturized embedded electronic and Internet of Things devices. Despite many advantages such as high-power density, long cycle life, fast charge/discharge rate, and moderate energy density, MSCs are not at the industrial level in 2022, while the first MSC was published more than 20 years ago. MSC performance is strongly correlated to electrode material, device configuration, and the used electrolyte. There are therefore many questions and scientific/technological locks to be overcome in order to raise the technological readiness level of this technology to an industrial stage: the type of electrode material, device topology/configuration, and use of a solid electrolyte with high ionic conductivity and photopatternable capabilities are key parameters that we have to optimize in order to fulfill the requirements. Carbon-based, pseudocapacitive materials such as transition metal oxide, transition metal nitride, and MXene used in symmetric or asymmetric configurations are extensively investigated. In this Review, the current progress toward the fabrication of MSCs is summarized. Challenges and prospectives to improve the performance of MSCs are discussed.Show less >
Show more >Microsupercapacitors (MSCs) have emerged as the next generation of electrochemical energy storage sources for powering miniaturized embedded electronic and Internet of Things devices. Despite many advantages such as high-power density, long cycle life, fast charge/discharge rate, and moderate energy density, MSCs are not at the industrial level in 2022, while the first MSC was published more than 20 years ago. MSC performance is strongly correlated to electrode material, device configuration, and the used electrolyte. There are therefore many questions and scientific/technological locks to be overcome in order to raise the technological readiness level of this technology to an industrial stage: the type of electrode material, device topology/configuration, and use of a solid electrolyte with high ionic conductivity and photopatternable capabilities are key parameters that we have to optimize in order to fulfill the requirements. Carbon-based, pseudocapacitive materials such as transition metal oxide, transition metal nitride, and MXene used in symmetric or asymmetric configurations are extensively investigated. In this Review, the current progress toward the fabrication of MSCs is summarized. Challenges and prospectives to improve the performance of MSCs are discussed.Show less >
Language :
Anglais
Audience :
Internationale
Popular science :
Non
Administrative institution(s) :
Université de Lille
CNRS
Centrale Lille
ENSCL
Univ. Artois
CNRS
Centrale Lille
ENSCL
Univ. Artois
Collections :
Research team(s) :
Matériaux inorganiques, structures, systèmes et propriétés (MISSP)
Submission date :
2023-03-27T01:51:12Z
2023-04-05T08:54:22Z
2023-04-05T08:54:22Z