• English
    • français
  • Help
  •  | 
  • Contact
  •  | 
  • About
  •  | 
  • Login
  • HAL portal
  •  | 
  • Pages Pro
  • EN
  •  / 
  • FR
View Item 
  •   LillOA Home
  • Liste des unités
  • Lille Économie Management (LEM) - UMR 9221
  • View Item
  •   LillOA Home
  • Liste des unités
  • Lille Économie Management (LEM) - UMR 9221
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Extending business failure prediction ...
  • BibTeX
  • CSV
  • Excel
  • RIS

Document type :
Article dans une revue scientifique
DOI :
10.1016/j.ejor.2022.06.060
Title :
Extending business failure prediction models with textual website content using deep learning
Author(s) :
Borchert, Philipp [Auteur]
Coussement, Kristof [Auteur]
Lille économie management - UMR 9221 [LEM]
De Caigny, Arno [Auteur]
Lille économie management - UMR 9221 [LEM]
de Weerdt, Jochen [Auteur]
Journal title :
European Journal of Operational Research
Pages :
348-357
Publisher :
Elsevier
Publication date :
2023-04
ISSN :
0377-2217
English keyword(s) :
Analytics
Business failure prediction
Text mining
NLP
Deep learning
HAL domain(s) :
Sciences de l'Homme et Société/Gestion et management
English abstract : [en]
Business failure prediction (BFP) is an important instrument in assessing the risk of corporate failure. While a large body of research has focused on BFP, recent research in operations research and analytics acknowledges ...
Show more >
Business failure prediction (BFP) is an important instrument in assessing the risk of corporate failure. While a large body of research has focused on BFP, recent research in operations research and analytics acknowledges the beneficial effect of incorporating textual data for predictive modelling. However, extant BFP research that incorporates textual company information is very scarce. Based on a dataset containing 13,571 European companies provided by the largest European data aggregator, this study investigates the added value of extending traditional BFP models with textual website content. We further benchmark various feature extraction techniques in natural language processing (i.e. the vector-space approach, neural networks-based approaches and transformers) and assess the best way of representing and integrating textual website features for BFP modelling. The results confirm that including textual website data improves BFP predictive performance, and that textual features extracted by transformers add the most value to the BFP models in this benchmark setting.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
Collections :
  • Lille Économie Management (LEM) - UMR 9221
Source :
Harvested from HAL
Files
Thumbnail
  • j.ejor.2022.06.060
  • Open access
  • Access the document
Université de Lille

Mentions légales
Université de Lille © 2017