Decision/objective space trajectory networks ...
Document type :
Communication dans un congrès avec actes
Title :
Decision/objective space trajectory networks for multi-objective combinatorial optimisation
Author(s) :
Ochoa, Gabriela [Auteur]
University of Stirling
Liefooghe, Arnaud [Auteur]
Optimisation de grande taille et calcul large échelle [BONUS]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Lavinas, Yuri [Auteur]
Université de Tsukuba = University of Tsukuba
Aranha, Claus [Auteur]
Université de Tsukuba = University of Tsukuba
University of Stirling
Liefooghe, Arnaud [Auteur]

Optimisation de grande taille et calcul large échelle [BONUS]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Lavinas, Yuri [Auteur]
Université de Tsukuba = University of Tsukuba
Aranha, Claus [Auteur]
Université de Tsukuba = University of Tsukuba
Conference title :
EvoCOP 2023 - 23rd European Conference on Evolutionary Computation in Combinatorial Optimization
City :
Brno
Country :
République tchèque
Start date of the conference :
2023-04-12
Book title :
Lecture Notes in Computer Science
Journal title :
Evolutionary Computation in Combinatorial Optimization
Publisher :
Springer Nature Switzerland
Publication place :
Cham
Publication date :
2023-04
English keyword(s) :
algorithm analysis
search trajectory networks
combinatorial optimisation
multi-objective optimisation
visualisation
search trajectory networks
combinatorial optimisation
multi-objective optimisation
visualisation
HAL domain(s) :
Informatique [cs]
Informatique [cs]/Intelligence artificielle [cs.AI]
Computer Science [cs]/Operations Research [math.OC]
Informatique [cs]/Intelligence artificielle [cs.AI]
Computer Science [cs]/Operations Research [math.OC]
English abstract : [en]
This paper adapts a graph-based analysis and visualisation tool, search trajectory networks (STNs) to multi-objective combinatorial optimisation. We formally define multi-objective STNs and apply them to study the dynamics ...
Show more >This paper adapts a graph-based analysis and visualisation tool, search trajectory networks (STNs) to multi-objective combinatorial optimisation. We formally define multi-objective STNs and apply them to study the dynamics of two state-of-the-art multi-objective evolutionary algorithms: MOEA/D and NSGA2. In terms of benchmark, we consider two- and three-objective ρmnk-landscapes for constructing multi-objective multi-modal landscapes with objective correlation. We find that STN metrics and visualisation offer valuable insights into both problem structure and algorithm performance. Most previous visual tools in multi-objective optimisation consider the objective space only. Instead, our newly proposed tool asses algorithm behaviour in the decision and objective spaces simultaneously.Show less >
Show more >This paper adapts a graph-based analysis and visualisation tool, search trajectory networks (STNs) to multi-objective combinatorial optimisation. We formally define multi-objective STNs and apply them to study the dynamics of two state-of-the-art multi-objective evolutionary algorithms: MOEA/D and NSGA2. In terms of benchmark, we consider two- and three-objective ρmnk-landscapes for constructing multi-objective multi-modal landscapes with objective correlation. We find that STN metrics and visualisation offer valuable insights into both problem structure and algorithm performance. Most previous visual tools in multi-objective optimisation consider the objective space only. Instead, our newly proposed tool asses algorithm behaviour in the decision and objective spaces simultaneously.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
Collections :
Source :
Files
- document
- Open access
- Access the document
- ochoa_evocop2023.pdf
- Open access
- Access the document
- document
- Open access
- Access the document
- ochoa_evocop2023.pdf
- Open access
- Access the document