Online Instrumental Variable Regression: ...
Type de document :
Pré-publication ou Document de travail
Titre :
Online Instrumental Variable Regression: Regret Analysis and Bandit Feedback
Auteur(s) :
Mot(s)-clé(s) en anglais :
Causality
Instrumental Variables
Online linear regression
Online learning
Bandit / imperfect feedback
Linear bandits
Regret Bounds
Econometrics
Two-stage regression
Instrumental Variables
Online linear regression
Online learning
Bandit / imperfect feedback
Linear bandits
Regret Bounds
Econometrics
Two-stage regression
Discipline(s) HAL :
Statistiques [stat]/Machine Learning [stat.ML]
Informatique [cs]/Ordinateur et société [cs.CY]
Informatique [cs]/Apprentissage [cs.LG]
Mathématiques [math]/Statistiques [math.ST]
Sciences de l'Homme et Société/Economies et finances
Sciences de l'Homme et Société/Méthodes et statistiques
Informatique [cs]/Ordinateur et société [cs.CY]
Informatique [cs]/Apprentissage [cs.LG]
Mathématiques [math]/Statistiques [math.ST]
Sciences de l'Homme et Société/Economies et finances
Sciences de l'Homme et Société/Méthodes et statistiques
Résumé en anglais : [en]
The independence of noise and covariates is a standard assumption in online linear regression with unbounded noise and linear bandit literature. This assumption and the following analysis are invalid in the case of ...
Lire la suite >The independence of noise and covariates is a standard assumption in online linear regression with unbounded noise and linear bandit literature. This assumption and the following analysis are invalid in the case of endogeneity, i.e., when the noise and covariates are correlated. In this paper, we study the online setting of Instrumental Variable (IV) regression, which is widely used in economics to identify the underlying model from an endogenous dataset. Specifically, we upper bound the identification and oracle regrets of the popular Two-Stage Least Squares (2SLS) approach to IV regression but in the online setting. Our analysis shows that Online 2SLS (O2SLS) achieves $\mathcal O(d^2\log^2 T)$ identification and $\mathcal O(\gamma \sqrt{d T \log T})$ oracle regret after $T$ interactions, where $d$ is the dimension of covariates and $\gamma$ is the bias due to endogeneity.Then, we leverage O2SLS as an oracle to design OFUL-IV, a linear bandit algorithm. OFUL-IV can tackle endogeneity and achieves $\mathcal O(d\sqrt{T}\log T)$ regret.For datasets with endogeneity, we experimentally show the efficiency of OFUL-IV in terms of estimation error and regret.Lire moins >
Lire la suite >The independence of noise and covariates is a standard assumption in online linear regression with unbounded noise and linear bandit literature. This assumption and the following analysis are invalid in the case of endogeneity, i.e., when the noise and covariates are correlated. In this paper, we study the online setting of Instrumental Variable (IV) regression, which is widely used in economics to identify the underlying model from an endogenous dataset. Specifically, we upper bound the identification and oracle regrets of the popular Two-Stage Least Squares (2SLS) approach to IV regression but in the online setting. Our analysis shows that Online 2SLS (O2SLS) achieves $\mathcal O(d^2\log^2 T)$ identification and $\mathcal O(\gamma \sqrt{d T \log T})$ oracle regret after $T$ interactions, where $d$ is the dimension of covariates and $\gamma$ is the bias due to endogeneity.Then, we leverage O2SLS as an oracle to design OFUL-IV, a linear bandit algorithm. OFUL-IV can tackle endogeneity and achieves $\mathcal O(d\sqrt{T}\log T)$ regret.For datasets with endogeneity, we experimentally show the efficiency of OFUL-IV in terms of estimation error and regret.Lire moins >
Langue :
Anglais
Collections :
Source :
Fichiers
- o2sls.pdf
- Accès libre
- Accéder au document
- document
- Accès libre
- Accéder au document