Fusion of Physiological and Behavioural ...
Type de document :
Communication dans un congrès avec actes
Titre :
Fusion of Physiological and Behavioural Signals on SPD Manifolds with Application to Stress and Pain Detection
Auteur(s) :
Wu, Yujin [Auteur]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Daoudi, Mohamed [Auteur]
Ecole nationale supérieure Mines-Télécom Lille Douai [IMT Nord Europe]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Amad, Ali [Auteur]
Lille Neurosciences & Cognition - U 1172 [LilNCog]
Sparrow, Laurent [Auteur]
Laboratoire Sciences Cognitives et Sciences Affectives - UMR 9193 [SCALab]
Fabien, D [Auteur]
Lille Neurosciences & Cognition - U 1172 [LilNCog]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Daoudi, Mohamed [Auteur]

Ecole nationale supérieure Mines-Télécom Lille Douai [IMT Nord Europe]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Amad, Ali [Auteur]

Lille Neurosciences & Cognition - U 1172 [LilNCog]
Sparrow, Laurent [Auteur]

Laboratoire Sciences Cognitives et Sciences Affectives - UMR 9193 [SCALab]
Fabien, D [Auteur]
Lille Neurosciences & Cognition - U 1172 [LilNCog]
Titre de la manifestation scientifique :
International Conference on Systems, Man, and Cybernetics
Ville :
Prague
Pays :
République tchèque
Date de début de la manifestation scientifique :
2022-10-09
Mot(s)-clé(s) en anglais :
stress detection
pain detection
multimodal fusion
covariance matrix
symmetric positive definite manifold
pain detection
multimodal fusion
covariance matrix
symmetric positive definite manifold
Discipline(s) HAL :
Informatique [cs]/Vision par ordinateur et reconnaissance de formes [cs.CV]
Sciences cognitives
Sciences cognitives
Résumé en anglais : [en]
Existing multimodal stress/pain recognition approaches generally extract features from different modalities independently and thus ignore cross-modality correlations. This paper proposes a novel geometric framework for ...
Lire la suite >Existing multimodal stress/pain recognition approaches generally extract features from different modalities independently and thus ignore cross-modality correlations. This paper proposes a novel geometric framework for multimodal stress/pain detection utilizing Symmetric Positive Definite (SPD) matrices as a representation that incorporates the correlation relationship of physiological and behavioural signals from covariance and cross-covariance. Considering the non-linearity of the Riemannian manifold of SPD matrices, well-known machine learning techniques are not suited to classify these matrices. Therefore, a tangent space mapping method is adopted to map the derived SPD matrix sequences to the vector sequences in the tangent space where the LSTM-based network can be applied for classification. The proposed framework has been evaluated on two public multimodal datasets, achieving both the state-ofthe-art results for stress and pain detection tasks.Lire moins >
Lire la suite >Existing multimodal stress/pain recognition approaches generally extract features from different modalities independently and thus ignore cross-modality correlations. This paper proposes a novel geometric framework for multimodal stress/pain detection utilizing Symmetric Positive Definite (SPD) matrices as a representation that incorporates the correlation relationship of physiological and behavioural signals from covariance and cross-covariance. Considering the non-linearity of the Riemannian manifold of SPD matrices, well-known machine learning techniques are not suited to classify these matrices. Therefore, a tangent space mapping method is adopted to map the derived SPD matrix sequences to the vector sequences in the tangent space where the LSTM-based network can be applied for classification. The proposed framework has been evaluated on two public multimodal datasets, achieving both the state-ofthe-art results for stress and pain detection tasks.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Collections :
Source :
Fichiers
- document
- Accès libre
- Accéder au document
- IEEE_SMC.pdf
- Accès libre
- Accéder au document