Tuning photoacoustics with nanotransducers ...
Document type :
Article dans une revue scientifique: Article original
DOI :
Title :
Tuning photoacoustics with nanotransducers via thermal boundary resistance and laser pulse duration
Author(s) :
Diego, Michele [Auteur correspondant]
iLM - FemtoNanoOptics [iLM - FemtoNanoOptics]
Gandolfi, Marco [Auteur]
Università cattolica del Sacro Cuore [Brescia] [Unicatt]
Giordano, Stefano [Auteur]
Laboratoire International associé sur les phénomènes Critiques et Supercritiques en électronique fonctionnelle, acoustique et fluidique [LIA LICS/LEMAC]
Acoustique Impulsionnelle & Magnéto-Acoustique Non linéaire - Fluides, Interfaces Liquides & Micro-Systèmes - IEMN [AIMAN-FILMS - IEMN]
Vialla, Fabien [Auteur]
iLM - FemtoNanoOptics [iLM - FemtoNanoOptics]
Crut, Aurélien [Auteur]
iLM - FemtoNanoOptics [iLM - FemtoNanoOptics]
Vallée, Fabrice [Auteur]
iLM - FemtoNanoOptics [iLM - FemtoNanoOptics]
Maioli, Paolo [Auteur]
iLM - FemtoNanoOptics [iLM - FemtoNanoOptics]
Fatti, Natalia Del [Auteur]
Institut universitaire de France [IUF]
iLM - FemtoNanoOptics [iLM - FemtoNanoOptics]
Banfi, Francesco [Auteur]
iLM - FemtoNanoOptics [iLM - FemtoNanoOptics]
iLM - FemtoNanoOptics [iLM - FemtoNanoOptics]
Gandolfi, Marco [Auteur]
Università cattolica del Sacro Cuore [Brescia] [Unicatt]
Giordano, Stefano [Auteur]

Laboratoire International associé sur les phénomènes Critiques et Supercritiques en électronique fonctionnelle, acoustique et fluidique [LIA LICS/LEMAC]
Acoustique Impulsionnelle & Magnéto-Acoustique Non linéaire - Fluides, Interfaces Liquides & Micro-Systèmes - IEMN [AIMAN-FILMS - IEMN]
Vialla, Fabien [Auteur]
iLM - FemtoNanoOptics [iLM - FemtoNanoOptics]
Crut, Aurélien [Auteur]
iLM - FemtoNanoOptics [iLM - FemtoNanoOptics]
Vallée, Fabrice [Auteur]
iLM - FemtoNanoOptics [iLM - FemtoNanoOptics]
Maioli, Paolo [Auteur]
iLM - FemtoNanoOptics [iLM - FemtoNanoOptics]
Fatti, Natalia Del [Auteur]
Institut universitaire de France [IUF]
iLM - FemtoNanoOptics [iLM - FemtoNanoOptics]
Banfi, Francesco [Auteur]
iLM - FemtoNanoOptics [iLM - FemtoNanoOptics]
Journal title :
Applied Physics Letters
Pages :
252201
Publisher :
American Institute of Physics
Publication date :
2022-12-21
ISSN :
0003-6951
English keyword(s) :
Interfacial thermal resistance
Nanoelectronics
Medical treatment optimization
Graphene
Acoustic waves
Thermal effects
Photoacoustic effects
Acoustic phenomena
Nanoparticles
Lasers
Nanoelectronics
Medical treatment optimization
Graphene
Acoustic waves
Thermal effects
Photoacoustic effects
Acoustic phenomena
Nanoparticles
Lasers
HAL domain(s) :
Physique [physics]/Physique [physics]/Optique [physics.optics]
Physique [physics]/Mécanique [physics]/Acoustique [physics.class-ph]
Sciences de l'ingénieur [physics]/Micro et nanotechnologies/Microélectronique
Physique [physics]/Mécanique [physics]/Acoustique [physics.class-ph]
Sciences de l'ingénieur [physics]/Micro et nanotechnologies/Microélectronique
English abstract : [en]
The photoacoustic effect in liquids, generated by metal nanoparticles excited with short laser pulses, offers high contrast imaging and promising medical treatment techniques. Understanding the role of the thermal boundary ...
Show more >The photoacoustic effect in liquids, generated by metal nanoparticles excited with short laser pulses, offers high contrast imaging and promising medical treatment techniques. Understanding the role of the thermal boundary resistance (TBR) and the laser pulse duration in the generation mechanism of acoustic waves is essential to implement efficient photoacoustic nanotransducers. This work theoretically investigates, for the paradigmatic case of water-immersed gold nanocylinders, the role of the TBR and laser pulse duration in the competition between the launching mechanisms: the thermophone and the mechanophone. In the thermophone, the nanoparticle acts as a nanoheater and the wave is launched by water thermal expansion. In the mechanophone, the nanoparticle directly acts as a nanopiston. Specifically, for a gold–water interface, the thermophone prevails under ns light pulse irradiation, while the mechanophone dominates shortening the pulse to the 10 ps regime. For a graphene-functionalized gold–water interface, instead, the mechanophone dominates over the entire range of explored laser pulse durations. The results point to high-TBR, liquid-immersed nanoparticles as potentially efficient photoacoustic nanogenerators, with the advantage of keeping the liquid environment temperature unaltered.Show less >
Show more >The photoacoustic effect in liquids, generated by metal nanoparticles excited with short laser pulses, offers high contrast imaging and promising medical treatment techniques. Understanding the role of the thermal boundary resistance (TBR) and the laser pulse duration in the generation mechanism of acoustic waves is essential to implement efficient photoacoustic nanotransducers. This work theoretically investigates, for the paradigmatic case of water-immersed gold nanocylinders, the role of the TBR and laser pulse duration in the competition between the launching mechanisms: the thermophone and the mechanophone. In the thermophone, the nanoparticle acts as a nanoheater and the wave is launched by water thermal expansion. In the mechanophone, the nanoparticle directly acts as a nanopiston. Specifically, for a gold–water interface, the thermophone prevails under ns light pulse irradiation, while the mechanophone dominates shortening the pulse to the 10 ps regime. For a graphene-functionalized gold–water interface, instead, the mechanophone dominates over the entire range of explored laser pulse durations. The results point to high-TBR, liquid-immersed nanoparticles as potentially efficient photoacoustic nanogenerators, with the advantage of keeping the liquid environment temperature unaltered.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
ANR Project :
Institut for Multiscale Science and Technology : from Fundamental Physics and Chemistry to Engineering in New Material and Processes and Ecotechnologies
PROJET AVENIR LYON SAINT-ETIENNE
Nano-engénierie 2D à haute pression : au-dela de la straintronique
Transferts d'énergie ultrarapide dans les nano-objets individuels
PROJET AVENIR LYON SAINT-ETIENNE
Nano-engénierie 2D à haute pression : au-dela de la straintronique
Transferts d'énergie ultrarapide dans les nano-objets individuels
Source :
Files
- APL22-AR-09379.pdf
- Open access
- Access the document
- document
- Open access
- Access the document
- document
- Open access
- Access the document
- APL22-AR-09379.pdf
- Open access
- Access the document